NIRTHERN ARIZロNA UNIVERSITY

THE CロLLEGE ロF BபSINESS
 ADMINISTRATIロN

Michael A．Traxell
STRUCTURAL ロPTIロN SENIロR THESIS

SPRING 2ロロG

The Pennsylvania State University DEPARTMENT ロF ARCHITECTURAL ENGINEERING

COLLEGE OF BUSINESS ADMINISTRATION

Michael A．Traxell Struetural

PRロلECT TEAM：	
－WNER：	Northern Arizona UNiVERSITY
ARCHITECT：	CARTER－BURGESS
STRUCTURAL ENGINEER：	c．t．s．
GENERAL CINTRACTOR：	RYAN CIMPANIES
MEP ENGINEERS：	ARUP

STRUCTURAL：

－SUPERSTRUCTURE：：PRECAST CINCRETE BEAMS，GIRDERS，CILUMNS
－StRUCTURAL StEEL RロロF
－FLロロR：HalLaw Care Precast CONCRETE

PLANKS
－LATERAL SYSTEM：COMBINATION QF Braced Frames，Moment frames，and Shear Walls

Narthern Arizana University

FLAGSTAFF，AZ

PRロJECT QVERVIEW：

－ 4 Stary Classradm Building
－ $110,0 \square \square$ Sq．Ft．
－ $20 \square 0$ Edition df international Building Cade
－CロNSTRUCTIロN：JULY 2ロロ4－لANUARY 2006
－Praject Cast：\＄24 Millian

MECHANICAL：

NATURAL VENTILATIロN－CロロL DESERT NIGHT AIR DRAWN IN AND CIRCULATED ロVER CONCRETE SLAB．DURING DAY，SLABS CロロL THE AIR ARロUND THEM．

ARCHITECTURAL：

－SIGNATURE BUILDING FQR CAMPUS
－Hame of Callege of Business ADMINISTRATIUN
－ 2 Sa SEAT AUDITGRIUM
－CAFÉ WITH םUTDロロR TERRACE
－CIMPUTER LABS
－LEED CERTIFICATION

TABLE af CONTENTS

Executive Summary 1
BUILDING BACKGRロUND 2
Praject Team 3
Existing CanditiansARCHITECTURAL4
STRUCTURAL 6
PRロPロSAL 9
Structural Steel Design
GRAVITY SYSTEM 12
LATERAL SYSTEM 15
CONNECTIGN DESIGN 22
CロNCLUSIONS 24
Acaustical Breadth Study
ANALYSIS 25
CロNCLUSIONS 28
Canstructian Breadth Study
SYSTEM CロMPARISON 29
CロST CロMPARISロN 32
SCHEDULE CロMPARISロN 33
CONCLUSIGNS 33
CロNCLUSIロN 34
RECOMMENDATION 35
Acknawledgements 36
REFERENCES 37

EXECUTIVE SUMMARY

EXECUTIVE SUMMARY

THE CロLLEGE af BUSINESS ADMINISTRATION IS LロCATED םN THE Narthern Arizana university campus in Flagstaff，Arizana．The CBA WAS DESIGNED AND JUST FINISHED CONSTRUCTION IN JANUARY ロF 2ロロ6．THE BUILDING IS THE NEW HロME FGR THE CBA AND INCLUDES CLASSRロロM SPACE，FACULTY ロFFICES，AND SロME COMPUTER LABS．THE EXISTING STRUCTURAL SYSTEM ロF THE CBA IS CIMPロSED ロF PRECAST HロLLIW CIRE PLANKS SPANNING BETWEEN PRECAST BEAMS WHICH FRAME INTG PRECAST CロLUMNS．

THIS REPロRT IS AN IN DEPTH STUDY AND REDESIGN ロF THE STRUCTURAL SYSTEM ロF THE CロLLEGE ロF BUSINESS ADMINISTRATION． THE GロAL OF THIS THESIS IS TO DESIGN A STRUCTURAL SYSTEM THAT FITS INTロ THE EXISTING LAYロபT םF THE BUILDING，HAS A LOWER ロVERALL CaST，AND HAS A SHIRTER CINSTRUCTION TIME．THE DESIGN AND ANALYSIS WERE CロMPLETED WITH THE USE ロF RAM STRUCTURAL SYSTEM AND STAADPRロ，COMPUTER ANALYSIS PRGGRAMS．

THE PRロPロSED STRUCTURAL SYSTEM IS A COMPロSITE STEEL SYSTEM．THE FLIOR FRAMING，CロLUMN，AND LATERAL SYSTEM WERE DESIGNED AND MEET THE CRITERIA GF THE $2 \square \square 3$ EDITION af THE INTERNATIGNAL BUILDING CロDE．AN ACロUSTICAL STUDY SHOWS THE PRロPロSED FLIロR SYSTEM MEETS THE RECDMMENDED LEVELS FIR FLロロRS．A CロST ANALYSIS DEMGNSTRATES THAT THE PRロPロSED SYSTEM HAS AN QVERALL CIST LESS THAN THAT ロF THE EXISTING SYSTEM， WHEREAS A SCHEDULE CロMPARISロN SHOWS THE PRロPロSED SYSTEM HAS A LINGER CONSTRUCTION TIME．THIS REPロRT SHOWS THAT THE PRロPロSED SYSTEM IS A FEASIBLE ロPTION FGR THE CILLEGE OF BUSINESS ADMINISTRATION．

BUILDING BACKGRロUND

The Coluege OF Business Administration

Michael Troxelu Structural Option

Final Report
2006

BUILDING BACKGRQUND

THE CaLLEGE ロF BUSINESS ADMINISTRATION IS A FIVE STロRY CLASSRロロM BUILDING ロN THE NロRTHERN ARIZロNA பNIVERGITY CAMPUS， LロேATED IN FLAGSTAFF，ARIZロNA．FLAGSTAFF IS LロロATED IN ロENTRAL ARIZロNA ABロபT HALFWAY BETWEEN PHロENIX AND THEGRAND CANYロN． BELロW IS A PIロTURE ロF THE WEST SIDE ロF THE NAப ロAMPUS WITH MロபNT HபMPHREY IN THE BADKGRロபND．THIS BபILDING，WHICH IS NロW FINISHED AND IN பSE，SERVES AS THE NEW HロME FロR THE ロロLLEGE ロF BபSINEG马

ADMINISTRATIDN AS WELL AS A CLASSRロロM BபILDING．

> NAゅ KNEW

THAT ITS CロLLEGE ロF
BUSINESS
Figure 1 －Flagstaff，AZ
ADMINISTRATIUN WAS
IN NEED ロF A MAJロR FACELIFT AND DECIDED Tロ CREATE A NEW
SIGNATURE BUILDING FロR ITG CAMPUS Tロ REPREGENT THEIR DEDICATIDN Tロ PRロVIDING THEIR STUDENTS WITH THE BEST PロSGIBLE EDUCATIロN． NAப WANTED ITG NEW CBA BUILDING Tロ BE A MARKETING TロロL Tロ ENTILE STUDENTS Tロ ATTEND NAL．THE LBA WAS READY Tロ BE USED FロR THE BEGINNING ロF THE SPRING SEMESTER IN لANUARY ロF THIS YEAR．

The College OF Business Administration

Michael Troxelu Structural Option

Final Report
2006

PRロJECT TEAM

ロWNER：

NロRTHERN ARIZロNA பNIVERSITY
FLAGSTAFF，AZ

ARCHITECT：

CARTER BURGESS INC．
1ロ1 Narth $1^{\text {st }}$ AVE，SUITE
31 ロロ
PhaENIX，AZ 85ロロ3
（6ロ2）253－12ロ2

GENERAL CINTRACTIR：

RYAN CロMPANIES

1 N．Central Ave，Suite 13 Oロ
PHOENIX，AZ B5ロロ4
（6ロ2）322－61ロロ

Structural Engineer：

CARUSa TURLEY SCaTT INC．
1 3ロ S．PRIEST DRIVE
TEMPE，AZ 85281
（48ロ）774－17ロロ

M／E／P ENGINEER：

ARUP
244ロ S．SEPULVEDA
BaULEVARD
Las Angeles，CA 9ロロ64
（31ロ）312－5ロ4ロ

LANDSCAPE／CIVIL ENGINEER：

CARTER BURGESS INC．
1ロ1 Narth $1^{\text {st }}$ AVE，SUItE
31 ロロ
PhロENIX，AZ 85ロロ3
（6ロ2）253－12ロ2

EXISTING CONDITIロNS

The College OF Business Administration

Michael Troxelu Structural Option

Final Report 2006

EXISTING CONDITIONS

ARCHITECTURAL CIMPGNENTS：

The Calbege af Business ADMINISTRATIロN IS LロCATED ロN MaCanNell Circle an the NAப CAMPUS IN FLAGSTAFF，ARIZロNA． THE CBA HAS A TOTAL FLロロR AREA ロF APPRロXIMATELY 11 ， 1 ， INCLUDES FロUR FLロロRS PLUS A MECHANICAL MEZZANINE．AS

Figure 2 －South Elevation

SEEN IN THE FLロロR PLAN BELロW， THE CBA IS 252 FEET LロNG AND ITS WIDTH RANGES FRDM BS FEET Tロ $1 \square 5$ FEET．THE BUILDING IS DIVIDED UP INTロ SEVEN BAYS，EACH BEING 36 FEET IN LENGTH，IN THE EAST－WEST DIRECTIロN．THE NロRTH SIDE ロF THE BUILDING IS BUILT WITH A CURVE WHICH HAS A RADIUS ロF 599 FEET．

Figure 3 －First Floor Plan

The College OF Business Administration

Michael Troxelu Structural Option

Final Report
2006

THE FAÇADE ロF THE CBA IS MADE பP ロF PRECAST ARCHITECTURAL CロNCRETE PANELS AND WINDロW SPACE．THE FIRST AND SECDND FLロロRS ARE SMALLER IN THE N－S DIRECTIロN THAN THE $3^{\text {RD }}$ AND $4^{\text {TH }}$ FLロロRS WHICH ALLロWS FロR A CロVERED WALKWAY ロN THE SロபTH SIDE ロF THE BUILDING．THIS FEATURE IS SHロWN IN FIGURE 2 ロN THE PAGE 4．THE SロபTH SIDE ロF THE BUILDING ALSロ HAS A LARGE LAWN AREA WHICH HIGHLIGHTS THE BUILDING．A MAIN ARCHITECTURAL FEATURE ロF THE $B A A$ IS ITS RロロF．SINCE THE MECHANICAL MEZZANINE RUNS THE LENGTH ロF THE BUILDING AND IS LロCATED BETWEEN CロLபMN LINES L AND D，THE RロロF IS NロT ロNE SURFACE．AS SEEN IN FIGURE 4 BELロW，AN EAST ELEVATIロN ロF THE LBA，THE RロロF IS AT DIFFERENT LEVELS AND HAS A 3／12 SLロPE ロN IT．

Figure 4 －West Elevation

The Coluege OF Business Administration

Michael Troxelu Structural Option

Final Report
2006

Existing Structural System

SUPERSTRUCTURE:

THE STRUCTURAL SYSTEM OF THE CBA IS MADE UP ロF PRECAST concrete elements. The graund flagr is campased of a 4" slab an grade an tap af 4" af aggregate base caurse fill. The $2^{\text {ND }}$, $3^{\text {RD }}$, AND $4^{\text {th }}$ FLIGRS ARE COMPQSED OF 1 " HOLLOW CORE PLANKS spanning 36 feet with a 3 " concrete tapping. in the upper
 beams. There are anly three different sizes of precast beams USED IN THE FRAMING THRQUGHOUT THE bUILDING. THE MOST COMMON IS AN INVERTED T-bEAM WHICH is A $16 "$ X 27" beAM WITH 9"X 1 "" flanges. These beams are located along all af the interiar COLUMN LINES ON THE UPPER FLOGRS EXCEPT WHERE THERE ARE apenings in the flagrs. As seen in figure 5 below, the beams are shawn in red and run narth and sauth. The beams lacated AROUND THE OPENINGS ARE SIMILAR TO THE T-BEAMS BUT ARE L-SHAPED
 rectangular beam which is only used sparingly. All df the

The College
OF
Business
Administration

Michael Troxelu Structural Option

Final Report Administration

CロLபMNS THRロபGHロபT THE BUILDING ARE 24＂SQUARE PRECAST ㄷロレபMNS．

THE Raロf af the CalLege af Business Administratian BUILDING IS CロNGTRUCTED USING STRUCTURAL STEEL．A MIXTURE ロF W

Figure 6 －Precast Column

SHAPED MEMBERS AND ロPEN WEB لロISTS ARE பSED．DUE Tロ THE பPPER MEZZANINE，THERE ARE RロロFS AT TWD DIFFERENT LEVELS WHICH BロTH SLロPE TロWARDS THE EDGE ロF THE BUILDING． THE LロWER RロロF IS BRロKEN INTロ TWロ SECTIロNS SINCE THE MEZZANINE IS THRロUGH THE MIDDLE ロF THE BUILDING．THE لISTS ARE CロVERED WITH 1－1／Z＂DEEP PAINTED STEEL DECK ロN THE LロWER RロロFS．THE பPPER RロロF HAS WЗロ×116 BEAMS SPANNING IN THE N－S DIRECTIロN．THE E－W DIRECTIロN HAS FロUR RロWS ロF STEEL I BEAMS．THIS UPPER RロロF HAS A 3－1／Z＂DEEP ACロபSTICAL STEEL DECK RUNNING IN THE N－S DIRECTIロN．

THE LATERAL SYSTEM ロF THE CBA IS MADE UP ロF A CロMBINATION ロF SHEAR WALLS，MロMENT FRAMES，AND BRACED FRAMES．THE LロCATIロNG ロF THE LATERAL ELEMENTG CAN BE GEEN ロN FIGURE 5 םN PAGE 6．THE SHEAR WALLS ARE 1 D INCH THICK PRECAST CDNCRETE WALLS AND ARE LロCATED ALロNG CロLUMN LINES 1，4，5，B，AND E．THE MロMENT FRAMES ARE CロMPロSED ロF THE 24＂PRECAST CロLUMNS AND STRUCTURAL STEEL I－BEAMS AT THE RロロF．THEY ARE LロCATED ALロNG CロLபMN LINES 4，5，A，AND B．THE BRACED FRAME USE THE 24＂ PRECAST LロLUMNS WITH 24＂$\times 26 "$ PRECAST BEAMS AT THE FLロロR

The College OF Business Administration

MICHAEL TROXELL STRUCTURAL OPTION

FINAL REPORT 2006

LEVELS，A WZ4XGB AT THE RロロF LEVEL AND B INCH STEEL PIPES AS BRACES．THE PICTURE BELDW SHOWS THE BRACED FRAMED AS THEY LロロK IN THE ᄃロMPLETED CロLLEGE ロF BUSINESS ADMINISTRATIDN．THE BRACES HAVE BEEN LEFT EXPロSED AS Tロ SHロW ロFF THE STRUCTURE ロF THE BUILDING IN ITS FINISHED STATE．

Figure 7 －Braced Frame in Completed CBA

FaUndATIロN：

THE FロUNDATIロN ロF THE CロLLEGE ロF BUSINESS ADMINISTRATION CロNSISTS ロF CAISSロNS，GRADE BEAMS，AND ᄃロNTINUロபS FロロTINGS． THE CAISSロNS ARE LロCATED BENEATH THE CロLUMNS AND RANGE IN SIZE FRGM 2＇G＂DIAMETER Tロ $\mathbf{7 ' ~ D I A M E T E R ~ W I T H ~ T H E ~ L A R G E S T ~ L D C A T E D ~}^{\prime \prime}$ BENEATH THE CENTRAL ᄃロLUMNS ALロNG ᄃロLபMN LINE C．IN ADDITIDN Tロ THE CAISSロNS，THE CBA UTILIZES GRADE BEAMS AND CロNTINUロUS FロロTINGS UNDER THE FIRST FLロロR SLAB ロN GRADE．THE CAISSロNS WILL BE THE MロST IMPロRTANT WHEN LロロKING AT THE LATERAL SYGTEM，AS THEY WILL HELP Tロ AVロID ロVERTURNING ロF THE STRபCTURE．

PRロPロSAL

The College OF Business Administration

Michael Troxelu Structural Option

Final Report
2006

PROPQSAL

Problem Statement：

Haw da we knaw the building being canstructed is utibizing the mast efficient design？Far a design af a building ta be implemented，it Must be realistic And warth the cast af CONSTRUCTIIN．THE STRUCTURAL SYSTEM IF A BUILDING PLAYS A BIG RGLE IN THE CONSTRUCTION time as well as the ロVERALL CロST ロF A BUILDING．AN ENGINEER＇S JロB IS NロT aNLY Tロ DESIGN A BUILDING WHICH is STRUCTURALLY SロUND，BUT Tロ DESIGN AN EFFICIENT BUILDING．

Figure 8 －North East Elevation STUDY םN ALTERNATIVE FLロロR SYSTEMS SHOWED THAT THERE ARE MULTIPLE SYSTEMS THAT CロULD BE VIABLE IN THE DESIGN ロF THE LロLLEGE ロF BUSINESS ADMINISTRATIDN． A STEEL SYSTEM WITH ᄃロMPロSITE STEEL AND CロNCRETE FLロロR WAS SHロWN Tロ BE THE MロST LIKELY SYSTEM Tロ BE MロRE EFFICIENT THAN THE EXISTING DESIGN．ALSロ，BY LロロKING AT THE LAYロபT ロF THE BUILDING， A STEEL SYSTEM SEEMS Tロ FIT IT VERY WELL．DUE Tロ THE LENGTHS ロF SPANS AND HIGH LロADS，IT IS NロT LIKELY THAT A CAST－IN－PLACE CロNCRETE SYSTEM WILL BE AS EFFICIENT AS THE EXISTING SYGTEM ロR A STEEL SYSTEM．

The College OF Business Administration

Michael Troxelu
Structural Option
Final Report
2006

PRロBLEM SロLUTIロN：

A CロMPロSITE STEEL STRUCTURAL SYSTEM WILL BE DESIGNED AND CロMPARED Tロ THE EXISTING PRECAST CONCRETE SYSTEM．IN ロRDER Tロ MAKE A ᄃロMPARISロN，THE SYSTEMS WILL பSE THE SAME FLロロR PLAN． THE CロLUMNS WILL BE PLACED IN THE SAME LロCATIロNS AS Tロ NロT INFRINGE ロN THE பSES ロF THE RロロMG．THE SYSTEM WILL USE BEAMS AND GIRDERS THAT WILL NロT MAKE THE CEILING Tロ FLロロR DEPTH MロRE THAN WHAT IT IS IN THE ロRIGINAL SYSTEM．THE TWロ SYGTEMG WILL BE CロMPARED BY DETERMINING THE CロST ロF EACH AS WELL AS THE CロNSTRUCTIロN TIME FロR EACH．FASTER CロNSTRUCTIロN AND CHEAPER ロVERALL CロST IS THE GロAL FロR THE STEEL SYSTEM．THE EFFECTS THE CHANGES HAVE ロN ロTHER SYSTEMS ロF THE BUILDING WILL ALSロ BE TAKEN INTロ CロNSIDERATIロN WHEN MAKING A CロMPARISロN ロF THE TWロ SYSTEMS．

SロLபTIロN METHロD：

THE DESIGN ロF THE CロMPロSITE STEEL SYSTEM WILL BE BASED ロN THE THIRD EDITIロN ロF THE LロAD RESISTANCE FACTロR DESIGN PUBLISHED BY AISC．EVEN THロபGH THE ロRIGINAL DESIGN WAS BASED ロN THE Zロロロ EDITIロN ロF THE INTERNATIDNAL BUILDING CロDE，THE REDESIGN WILL BE BASED ロN THE 2ロロ3 EDITIロN．ASCE 7－ロZ WILL BE THE BASIS FロR THE DESIGN SEISMIC AND WIND LロADS．

A MロDEL ロF THE BUILDING WILL BE CロNSTRUCTED USING RAM STRUCTURAL SYSTEM AND THE PRロGRAM WILL BE USED Tロ ASSIST IN THE DESIGN ロF THE BEAMS，GIRDERS，AND CロLUMNS UNDER DEAD AND LIVE LロADS．THE LATERAL FロRCE RESISTING SYSTEM WILL BE MADE UP ロF ロNLY BRACED FRAMES IF PロSSIBLE．SINCE MロMENT CロNNECTIロNS ARE MロRE EXPENSIVE AND TAKE MロRE TIME，THEY WILL BE AVロIDED WHERE THEY CAN BE．THE SEISMIC DESIGN LロADS WILL HAVE Tロ BE DETERMINED FロR THE NEW DESIGN．THIS IS BECAUSE THE WEIGHT ロF THE BUILDING

The College OF Business Administration

WILL DECREASE WHICH WILL CHANGE THE FロRCES THE BUILDING CロபLD FEEL IN THE EVENT ロF AN EARTHQபAKE．ロNCE THE CロNTRロLLING LATERAL LロADS ARE DETERMINED，THE BRACED FRAMES WILL BE MロDELED பSING STAAD．PRロ AND THE MEMBERS WILL BE IMPUTED INTD THE RAM MロDEL Tロ CHECK FロR DEFLECTIロN AND STロRY DRIFT．\square NCE THE GRAVITY AND LATERAL SYSTEMS HAVE BEEN DESIGNED，A CロST ANALYSIS AND A SCHEDULE WILL BE CロMPLETED AND CロMPARED WITH THE EXISTING SYSTEM．

STRUCTURAL STEEL DESIGN

The Coluege OF Business Administration

MICHAEL TROXELL Structural Option

FINAL REPORT
2006

GTRUCTURAL STEEL DESIGN

Design Criteria：

EVEN THロUGH THE EXISTING STRUCTURE WAS DESIGNED BASED QN the 2aロa IBa Cade，I Will use the Zaロ3 Editian sa that I am DESIGNING USING THE MaSt RECENT CロDE．ASCE 7－ロZ WILL be USED Tロ FIND THE DESIGN LロADS AND THE $3^{\text {RD }}$ EDITIGN LRFD MANUAL \quad F STEEL CONSTRUCTIGN WILL BE USED IN THE DESIGN ロF THE STEEL MEMBERS．ANロTHER MAJIR CONSIDERATION WILL BE Tロ KEEP THE SAME APPEARANCE \quad F THE BUILDING．THIS WILL BE SHOWN IN LEAVING THE LAYロUT ロF THE FLロロRS THE SAME AS THEY ARE IN THE EXISTING SYSTEM． I WILL ALSI KEEP FACTORS SUCH AS COST AND CONSTRUCTION TIME IN MY MIND WHEN I AM DロING THE DESIGN ロF THE PRロPロSED STEEL system．These will be the driving farces which will make the STEEL SYSTEM MロRE EFFICIENT THAN THE PRECAST SYSTEM．

Design Gravity Ladis：

DEAD LロADS：

CIMPGSITE DECK	68 PSF
STEEL FRAMING	8 PSF
FLGIR	3 PSF
CEILING	2 PSF
M／E／P	9 PSF
TGTAL	$8 \square \mathrm{PSF}$

LIVE LロADS：
FLロロR 1 ロロ PSF

1 ロロ pSF LIVE LロAD WILL BE USED THRロUGHロUT THE ENTIRE FLロロR since that is what was used an the existing design．This will ALLOW FIR FUTURE CHANGE IN FLロロR PLAN IF DESIRED．

The Coluege
of
Business
Administration

Michael Troxelu Structural Option

Final Report
2006

LAYロut：

THE FLロロR PLAN FロR THE PRロPロSED STEEL SYSTEM WILL BE THE SAME AS THAT ロF THE EXISTING SYSTEM．FロR THE STEEL SYSTEM，I CHロSE Tロ RUN THE GIRDERS IN THE EAST－WEST DIRECTIDN INGTEAD ロF THE NロRTH－SロUTH DIRECTIロN IN WHICH THEY RAN IN THE EXIGTING SYSTEM．I CHロSE Tロ Dロ THIS Sロ THAT THE BEAMS CロULD BE EVENLY SPACED AT NINE FEET ロN CENTER THRロUGHロபT THE ENTIRE FLロロR．THIS WロபLD ALSロ ALLロW THE GIRDERS Tロ ALL BE 36 FEET IN LENGTH AND ALLロW FロR MロST ロF THE CロNNECTIロNS Tロ BE THE SAME．REPETITIDN HELPS A BUILDING Tロ BE CロNSTRUCTED FASTER．I CHロSE Tロ PLACE CロLபMNS IN ALL ロF THE SAME PLACES AS IN THE EXISTING DESIGN EVEN THロபGH I CロபLD HAVE DロNE AWAY WITH SロME．I DID THIS BECAபSE I DID NロT WANT Tロ MAKE THE SPANS ANY LロNGER THAN THEY WERE Sロ THAT THE BEAMS AND GIRDERS WロULD NロT GET Tロロ DEEP．

Figure 9 －Typical Plan Layout

The College
OF
Business
Administration

Michael Troxelu Structural Option

Final Report
2006

GRAVITY SYSTEM：

AFTER DECIDING ロN THE BASIC LAYロUT ロF THE MEMBERS，I MロDELED THE STRUCTURE USING RAM STRUCTURAL SYSTEM AND DESIGNED THE FLロロR FRAMING FロR THE GRAVITY LロADS．I CHロGE Tロ பSE A பSD 1．5＂B－LロK FLロロR DECK WITH 4＂ロF ロロNCRETE BASED ロN THE LロADS AND THE NINE FロロT SPAN．THIS INFロRMATIロN，ALロNG WITH THE LロADS SHロWN ABロVE，WAS IMPUTED INTロ RAM．RAM WAS SET UP Tロ DESIGN THE FLロロR SYSTEM BASED ロN THE LRFD $3^{R D}$ EDITION MANUAL ロF STEEL CロNSTRUCTIロN．AFTER I RAN THE RAM ANALYSIS，I LロロKED AT THE ロUTPUT AND MADE SロME ロF THE BEAMS LARGER THAN THEY HAD Tロ BE．THIS WAS DロNE Sロ THAT SAME SIZED BEAMS WERE பSED IN THE SAME AREA．AGAIN，REPETITIロN WAS THE GロAL．FIGURE $1 \square$ SHロWS SロME ロF THE SIZES ロF THE MEMBERS IN A TYPICAL FLロロR．DUE Tロ SIMILARITY，THE SIZES ロF ALMロST ALL BEAMS ARE SHロWN BY THE FIGURE BELロW．THE MロST CロMMロN SIZES FロR BEAMS WERE WBX 1 ロ FロR

Figure 10 －Typical Floor Plan
THE SPANS ロF 12 FEET AND UNDER，W 12×14 FロR SPANS WITH LENGTHS ARロUND $2 \square$ FEET，AND W 16×26 FロR THE SPANS \mathcal{G} TP Tロ 36 FEET．THE GIRDERS FロR THE MロST PART ARE W $21 \times 5 \square$ AND W 21×62 SHAPES． ロNCE THE FLロロR SYSTEM WAS DESIGNED，I பSED RAM Tロ MロDEL THE BUILDING IN THREE DIMENSIDNS．THIS ALLDWED ME Tロ DESIGN THE

The Coluege
of
Business
Administration

Michael Troxelu Structural Option

Final Report
2006

ᄃロLபMNS Tロ CARRY THE GRAVITY LロADS．THE LロLUMNS WERE DESIGNED Tロ BE TWロ STロRY CロLUMNS WHICH WILL HELP Tロ SPEED UP THE CロNGTRUCTIロN PRロロESS WITHロபT CAUSING SHIPPING PRロBLEMS DUE Tロ MEMBERS BEING Tロロ LロNG．A CロLUMN SUMMARY CAN BE FロUND IN APPENDIX B．THE ロபTPUT FRロM RAM ロF THE ᄃロLபMNS SHロWS THAT THERE ARE ロNLY A FEW DIFFERENT SIZES ロF CロLபMNS，ESPECIALLY FロR THロSE WHICH WERE NロT PART ロF THE LATERAL SYSTEM．

DEsign LATERAL LロADS：

THE EXISTING LATERAL SYSTEM DESIGN WAS CロNTRロLLED BY SEISMIC LロADS．SINCE THE FLロロR SYSTEM HAS UNDERGロNE DRASTIC CHANGES IN THE PRロPロSED SYSTEM，THE SEISMIC LロADS MUST BE RECALCULATED Tロ SEE IF THEY WILL STILL CロNTRロL THE DEGIGN ロF THE СBA．THE PRロPロSED SYSTEM HAS A SMALLER MASS THAN THE EXISTING SYSTEM，Sロ THE SEISMIC LロADS WILL DECREASE．

WIND LロADS：
－ 3 SECDND WING GUST $=9 \square \mathrm{MPH}$
－ExPロSபRE C
－IMPロRTANCE FACTロR I＝ 1.15

WIND					
Level	PLF	$\mathbf{F}_{\mathbf{x}}$	\mathbf{V}_{x}	$\mathbf{M}_{\mathbf{x}}$	
Roof	201	50.7	0	3039.1	
5	423.2	106.6	50.7	5812.2	
4	372.3	93.8	157.3	3940.4	
3	342.4	86.3	251.2	2416.0	
2	318.9	80.4	337.4	1125.1	
1	0	0.0	417.8	0.0	
		$\Sigma=$		$\Sigma=$	
		417.8		16332.8	

Figure 12 －Wind Load Summary

The College OF
Business Administration

MICHAEL TROXELL Structural Option

FINAL REPORT
2006

SEISMIC LロADS：
－Sail site class \subset
－$S_{s}=\square .46 \sigma$
－$S_{1}=\square .13 \square$
THE WEIGHTS ロF THE FLロロRS WERE CALCULATED bASED GN THE PRGPロSED CロMPロSITE CロNCRETE AND STEEL DESIGN．THESE WERE THEN USED Tロ DETERMINE THE STIRY FGRCES AND STGRY SHEARS．

SEISMIC							
Base Shear＝ 538							
Level， x	w_{x}	h_{x}	$w_{x} h_{x}{ }^{\text {k }}$	C_{vx}	F_{x}	V_{x}	M_{x}
	（kips）	（ft）			（kips）	（kips）	（ft－kips）
Roof	1000	64	64，000	0.207	111		7，123
5	700	54.5	38，150	0.123	66	111	3，616
4	2500	42	105，000	0.339	183	178	7，670
3	2500	28	70，000	0.226	122	360	3，409
2	2300	14	32，200	0.104	56	482	784
1						538	
	$\begin{gathered} \Sigma= \\ 9000 \end{gathered}$		$\begin{gathered} \Sigma= \\ 309350 \\ \hline \end{gathered}$	$\begin{aligned} & \Sigma= \\ & 1.000 \end{aligned}$	$\begin{array}{r} \\ \hline \end{array}$		$\begin{aligned} & \Sigma= \\ & 22602 \end{aligned}$

Figure 13 －Earthquake Load Summary

Story Forces	
Roof	111 kips
5th	66 kips
4th	183 kips
3rd	122 kips
2nd	56 kips
Base	-

Figure 14

THE BASE SHEAR WAS FロUND Tロ BE 538 KIPS

FロR THE SEISMIC ANALYSIS，AND THE BASE SHEAR FロR WIND 418 KIPS．THE STロRY SHEARS FロR THE SEISMIC LロAD CASE ARE FAR LARGER THAN THロSE FロR THE WIND CASE．THIS SHOWS THAT EVEN THロபGH THE PRロPロSED SYSTEM WEIGHS LESS THAN THE EXISTING SYSTEM，THE SEISMIC LDAD CASE WILL

The College
OF
BuSiness
Administration

Michael Troxell Structural Option

Final Report
2006

STILL CロNTRロL THE DESIGN ロF THE LATERAL SYSTEM．FIGURE 14 SHロWS THE LロADS WHICH WILL BE பSED FロR THE DESIGN ロF THE LATERAL SYSTEM ロF THE СBA．

LATERAL FIRCE RESISTING SYSTEM：

THE LATERAL SYGTEM FロR THE PRロPロGED REDEGIGN ロF THE CBA IS MADE UP ロF STEEL BRACED FRAMES．THE FIRST STEP IN REDEGIGNING THE LATERAL SYGTEM WAS Tロ FIND THE LロADS，WHICH WAS SHロWN ABロVE．AFTER THIS，LロロATIロNS FロR FRAMES WERE CHロSEN．SINCE THIS IS A REDESIGN，I LロロKED AT THE EXISTING LATERAL ELEMENTS AND THEIR PLACEMENT Tロ SEE WHERE THE LロGICAL PLACES FロR FRAMES WロULD BE． ALSロ，SINCE THE BUILDING DロES NロT HAVE Tロロ MANY INTERIロR WALLS， THE LロCATIロNS WERE LIMITED．BELロW IS SHロWN A PLAN WITH THE LロCATIロNS WHICH WERE CHロSEN FロR FRAMES．

Figure 15 －Proposed Frame Locations

THESE LロCATIONS WERE CHロSEN FロR SEVERAL DIFFERENT REASONS．FIRST ロF ALL，THERE WERE FRAMES ロR SHEAR WALLS AT THESE SAME LロCATIGNS IN THE GRIGINAL DESIGN OF THE BUILDING． SECINDLY，HAVING TWG FRAMES ALL THE WAY AT THE EDGE ロF THE BUILDING WILL DECREASE THE BUILDINGS Tロ PRロBLEMS DUE Tロ TロRSIロN．

The College OF Business Administration

Michael Troxelu Structural Option

Final Report 2006

HロWEVER，பPロN FURTHER INSPECTIロN，THE LロCATIロNS ロF THE FロபR FRAMES WHICH RUN IN THE NロRTH－SロUTH DIRECTIロN PロSE AN INTERESTING PRロBLEM．THE FLロロR PLAN SHOWN IN FIGURE 15 ロN THE PREVIロUS PAGE IS FロR THE THIRD AND FロபRTH FLロロRS．THE GECDND AND GRロபND FLロロRG HAVE A VERY SIMILAR LAYロUT，EXCEPT THAT THE AREA ロF THE FLロロR IS SMALLER SINCE THE SロUTHERNMロST WALL IS SET BACK $1 \square$ FEET．THE CロLUMNS CONTINUE ALロNG THE SAME LINES THE ENTIRE HEIGHT ロF THE BUILDING，CREATING A CロVERED ロUTDロロR WALKWAY．THIS IS ILLUSTRATED IN THE PICTURE BELDW．

Figure 16 －Walkway during construction

Braced Frame Design：

ロNLY TWロ DESIGNS WERE DロNE FロR THE BRACED FRAMES FロR THE REDESIGN ロF THE LATERAL SYSTEM．THE FロபR FRAMES WHICH RUN IN THE NロRTH－SロUTH DIRECTIロN WILL BE IDENTICAL AS WILL THE THREE WHICH RUN IN THE EAST－WEST DIRECTIDN．DNCE AGAIN，THIG IG DONE Tロ HELP EASE THE CロNSTRUCTIロN PRロロESS．

IN ロRDER Tロ DISTRIBUTE THE LATERAL LロADS Tロ THE FRAMES，A TロRSIロNAL ANALYSIS MUST BE DロNE．AT FIRST I DID NロT Dロ THIS

The Coluege OF Business Administration

Michael Troxelu Structural Option

Final Report
2006

BECAUSE I ASSUME THAT THE ADDITIロNAL TロRSIロNAL FロRCES ロN EACH ロF THE FRAMES WILL BE NEGLIGIBLE DUE Tロ THE GEロMETRY ロF THE FRAMES．THE FRAMES THAT ARE PLACED AT ㄷロLபMN LINES A AND H WILL HELP Tロ MAKE THE CBA A TロRSIロNALLY STABLE BUILDING．SINCE THE CENTER ロF RIGIDITY IS VERY CLロSE Tロ THE CENTER ロF MASS，THE TロRSIロN WILL MロSTLY BE CAUSED BY THE MINIMUM ECCENTRICITY，AS REQUIRED BY ASCE 7－ロZ，ロF 5% ロF THE BUILDINGS LENGTH．

USING STAADPRロ，I CREATED A MODEL OF MY FRAMES．I DECIDED Tロ பGE A＂K＂FRAME AS ロPPロSED Tロ AN＂X＂FRAME．THIG WAS CHロSEN SINCE THE HロRIZロNTAL LENGTHS ロF THE FRAMES ARE 36 FEET AND THE FLロロR－Tロ－FLロロR HEIGHTS ARE BETWEEN 12.5 FEET AND 14 FEET．THE ＂K＂FRAME WAS ASSUMED Tロ BE MロRE EFFICIENT SINCE THE BRACES WILL BE CLロSER Tロ AN ロPTIMAL 45 DEGREES．IN THE STAAD MロDEL I INCLUDED ALL ロF THE GRAVITY AND LATERAL LロADS．THERE WERE A TロTAL ロF SEVEN LロAD ᄃASES CHECKED IN THE ANALYSIS．BELロW IN FIGURE 17 ，THE EAST－WEST FRAME IS SHOWN WITH THE LDADS APPLIED．

Figure 17 －East－West Braced Frame w／Loads

The College
OF
Business
Administration

Michael Troxell Structural Option

Final Report Administration

AS A STARTING PLACE FGR THE STAAD MODEL，THE SIZES ロF THE MEMBERS FロUND FRロM THE GRAVITY ANALYSIS WERE IMPUTED．IN ロRDER Tロ MINIMIZE THE DRIFT ロF THE BUILDING AND ロF THE INDIVIDUAL FLロロRS，THE CロLபMNG WERE RESIZED Tロ BE LARGER THAN THEY WERE FロR GRAVITY ロNLY．THE BRACE MEMBER WHICH WAS USED FロR BロTH ロF THE FRAMES WAS A W 1 DX77．THE DRIFT FロUND WAS LESS THAN H／Gロロ FロR THE ENTIRE BUILDING AND FロR EACH ロF THE INDIVIDUAL FLロロRS．

THE FRAME DESIGNED FロR THE NロRTH－SロUTH DIRECTIロN WAG MロRE CロMPLICATED．AS PロINTED ロUT EARLIER IN THIS SECTIロN，THE REGULAR ＂K＂ロR＂X＂BRACING ᄃロபLD NロT BE பSED BELロW THE THIRD FLDロR DUE Tロ THE WALKWAY PICTURED IN FIGURE 16. BELロW IS THE SHAPE ロF THIS IRREGULAR FRAME．

Figure 18 －North－South Braced Frame

The College Business Administration

Michael Troxelu Structural Option

Final Report 2006

THE PRロCESS FロR DESIGNING THE IRREGULAR FRAME WAS THE SAME AS THAT ロF THE REGULAR FRAME．THE BRACES USED WERE THE SAME，AS WERE THE CロLபMN SIZES FロR EACH FLロロR．THE FRAMES LロCATED AS SHロWN IN FIGURE 15 PRロVED Tロ BE SUFFICIENT FロR THE DEFLECTIロN CRITERIA ロF H／Gロロ．THE FRAMES DEMロNSTRATED THEY HAVE ENロUGH RIGIDITY Tロ STABILIZE THE LBA IF AN EARTHQUAKE WロபLD ロロロபR．

Figure 19 －West Elevation Rendering

The College OF Business Administration

Michael Troxelu
Structural Option
Final Report
2006

CInNectian Design：

IN A STEEL BUILDING THE TYPE ロF CロNNECTIロNS USED CAN PLAY A LARGE RロLE IN CロST AND ALSロ CロNGTRUCTIロN TIME．NロT ロNLY ARE MロMENT CロNNECTIロNS TYPICALLY MロRE EXPENSIVE，BUT THEY HAVE A PRロPENSITY Tロ ADD A SIGNIFICANT AMロபNT ロF ERECTIロN TIME．FロR THE CBA REDESIGN，I CHロSE Tロ பSE ロNLY SIMPLE CロNNECTIロNS IF PロSSIBLE．AS WAS ปபST STATED IN THE LATERAL SYSTEM DESIGN，THERE WAS Nロ NEED FロR MロMENT CロNNECTIロNS，THUS ALLロWING FロR THE USE ロF MロRE SIMPLE CロNNECTIロNS．FロR THIS DESIGN，BロLTED CロNNECTIロNS ARE PREFERRED ロVER FIELD WELDED ᄃロNNECTIDNS．

I DESIGNED A CONNECTIDN BETWEEN A BEAM AND A GIRDER．THIS CロNNECTIロN IS THE MロST USED CロNNECTIDN IN THE BUILDING．IT IS ALSロ SIMILAR Tロ CロNNECTIロNS BETWEEN ロTHER BEAMS AND GIRDERS． THE CONNECTIDN I DESIGNED WAS WHERE A W 16×31 BEAM FRAMES INTD A W2 $1 \times G 2$ GIRDER．I CHECKED Tロ SEE IF A SINGLE ANGLE CONNECTIDN WITH THE பSE ロF $3 / 4 "$ DIAMETER BロLTS WILL BE SUFFICIENT Tロ TRANSFER THE REACTIDN ロF 36.5 KIPS．THE TロP ロF THE BEAM WILL BE CDPED Tロ ALLロW IT Tロ FRAME INTロ THE GIRDER．THE ANGLE CHDSEN FGR THE CロNNECTIロN WAS A $9 " L 31 / 2 " \times 31 / 2 " \times 1 / 2 "$ WITH THREE $3 / 4 "$ BロLTS．THE CロNNECTIロN CHECKED BY ALL ロF THE LIMIT STATES LISTED BELロW．

The College OF Business Administration

LIMIT STATES CHECKED:

- Angle Shear Yield
- Angle Shear Rupture
- Angle Black Shear Rupture
- Angle Flexural Yield
- Angle Flexural Rupture
- beam Web black Shear
- Caped Beam Flexure
- Angle Bearing/TeAraut \& Balt Shear \& Beam BeARING/TEARロபT

Figure 20 - Beam to Girder Connection

The Coluege OF Business Administration

Michael TROXELL Structural Option

FinAl REPORT
2006

Canclusians：

THE STRUCTURAL STEEL SYSTEM PRロPロSED IN THIS REPロRT HAS been checked and camplies with the $2 \square \square 3$ Ibc cade．The system HAS SHOWN THE CAPABILITY Tロ CARRY THE DESIGN LロADS MAPPED םUT IN THIS SECTIGN．IT MEETS THE CRITERIA REGARDING KEEPING THE SAME LAYロUT AS THE EXISTING SYSTEM．THE FLロロR FRAMING IS A CONCRETE SLAB ロN COMPロSITE METAL DECK ON STRUCTURAL STEEL．THE LATERAL FIRCE RESISTING SYSTEM IS CQMPRISED OF FQUR IDENTICAL BRACED FRAMES RESISTING LATERAL LIADS IN THE NGRTH－SロUTH DIRECTIUN AND THREE BRACED FRAMES FIR THE EAST－WEST LIADS．

Since the averall weight af the prapased steel system is LIGHTER THAN THE EXISTING PRECAST CONCRETE SYSTEM，THE FIUNDATIGNS Dロ NOT NEED Tロ be REDESIGNED．THEY MAY NDW be םVER SIZED，BUT THEY waULD WロRK．THE RロロF SYSTEM USED aN THE EXISTING bUILDING WILL Nat CHANGE IN THE NEW PRロPロSED SYSTEM．

AcaபSTICAL BREADTH STUDY

The Coluege OF Business Administration

ACQUSTICAL BREADTH STUDY

Prablem STATEMENT：

IN THE PRロCESS ロF DESIGNING THE NEW CロMPロSITE STEEL STRUCTURAL SYSTEM，THE CONCRETE SLAB HAS BECOME THINNER．IN THE ロRIGINAL DESIGN，THE FLロロR WAS MADE UP ロF A 1 I INCH HロLLDW CORE PLANK WITH AN EXTRA THREE INCHES ロF TロPPING．THIS IS MUCH MロRE CロNCRETE IN WHICH SロUND ENERGY IS DISSIPATED IN THAN THE FIVE AND A HALF INCHES ロF CONCRETE THAT WILL BE ロN METAL DECK IN THE NEW SYSTEM．THE GロAL ロF THIS ANALYSIS IS Tロ DETERMINE IF THE PRロPロSED FLロロR SYSTEM IS ADEQUATE Tロ KEEP THE SロUND TRANSMISSIGN BETWEEN FLロロRS Tロ A MINIMUM．THE AREA ロF FロCUS WILL be THE FLロロR between The mechanical equipment and a CLASSRロロM AS WELL AS A PRIVATE ロFFICE．

ANALYSIS：

IN ロRDER Tロ ANALYZE THE FLロロR SYSTEM，I NEEDED Tロ DETERMINE THE CRITERIA FQR WHICH I WAS TG DESIGN．SINCE THE ANALYSIS IS Tロ BE DロNE ロN THE FLロロR SEPARATING A MECHANICAL SPACE AND ロTHER SPACES，I FロUND RECロMMENDED RC（RロロM CRITERIA）VALUES FGR DIFFERENT TYPES ロF RロロMS．THESE VALUES DEPEND $\square N$ THE USE ロF THE RロロM．A RロロM SUCH AS A LIBRARY ロR A RESTAURANT WロULD HAVE A DIFFERENT RATING THAN THAT ロF A CLASSRロロM ロR AN APARTMENT．IN THE LIBRARY AND RESTAURANT， PEロPLE WANT PRIVACY AND BACKGRGUND NロIGE WGULD be aK． WHEREAS，IN A CLASSRQロM，THE NEED FQR COMMUNICATIGN IS HIGHER Sa Taロ MபロH saund caming inta the raam fram the HVAC system WロULD be Undesirable．As seen in the table belaw，the RC far a CLASSRロロM IS Tロ BE BETWEEN 25 AND $3 \square$ AND THE RC FロR A PRIVATE ロFFICE IS RECDMMENDED Tロ BE BETWEEN 3ロ AND 35．FロR THIS ANALYSIS，I CHロSE Tロ USE RD VALUES ロF 25 AND $3 \square$ FロR THE CLASSRロロM AND ロFFICE RESPECTIVELY．

The College OF
Business
Administration
Michael Troxell
Structural Option
Final Report
2006

Recammended RC RAtings far HVAC NaIse		
RaロM TYpe	RC	REASON
Private Residences	25－3口	Same Privacy
APARTMENTS	3口－35	PRIVACY
PRIVATE DFFICES	30－35	Same Privacy
CINFERENCE RロロMS	25－3口	CロMMUNICATIロN
口PEN PLAN ロffices	35－4ロ	PRIVACY
SCHOQL CLASSRロロMS	25－30	CロMMUNICATIロN
LIbraries	35－40	PRIVACY
RESTAURANTS	4ロ－45	PRIVACY
RECIRDING StUdias	15－20	CロMMUNICATİN

Figure 21 －RC Table

TRANE AㅁUSTICS PRロGRAM（TAP）WAS USED Tロ DETERMINE WHAT TYPE ロF SロUND THE KNロWN FANS，WHICH ARE IN THE AIR HANDLING பNITS LロCATED IN THE MECHANICAL RロロM，PRロDபCE．THIS WAS பSED AS THE SロபRCE PロWER LEVEL．IN ロRDER Tロ DETERMINE IF THE FLロロR SYSTEM IS ADEQUATE，I DECIDED Tロ FIND ロபT WHAT THE ESTIMATED TRANSMISSIロN LロSS FロR THE FLロロR BETWEEN THE RロロMS WロபLD BE Tロ MEET THE REQUIRED RC RATING IN THE RECEIVER RロロM AND CDMPARE IT Tロ THE VALபES ᄃロMMロNLY பSED FロR THE TYPE ロF FLロロR I HAVE．THE CALCULATIロN AND STEPS USED ARE SHロWN BELロW．

FINDING TRANSMISSIDN LロSS REQUIRED：

```
TL = NR - (1OLqg(Apartition))-(1 Olqg(Rt-receiver))
    NR = Squrce Lp - RC
    SaURce Lp = Lw+(10lqg(Rt-sवurce))+6
    R
    s\alpha= \sum(A)*\mp@subsup{\alpha}{1}{})
\mp@subsup{\alpha}{\mathrm{ sab,AVg }}{}=\sum(\mp@subsup{A}{1}{}\mp@subsup{\alpha}{1}{\prime})/\sumA
```


The Coluege OF Business Administration

Michael Troxell Structural Option

FINAL REPORT 2006

Results：

CLASSRIロM				
FREQUENCY	R	TL REQ＇D	TL ACTUAL	$\square K ?$
Hz		DB	DB	
125	$4 \square$	$26 . \square$	43	$\square \mathrm{K}$
250	35	38.2	52	$\square \mathrm{K}$
$5 \square \square$	$3 \square$	38.1	59	$\square \mathrm{K}$
1 ロロロ	25	37.3	67	$\square \mathrm{K}$
2ロロロ	$2 \square$	34.2	72	ロK
4ロロロ	15	35.5	55	$\square K$

Figure 22 －Classroom Check

FACULTY DFFICE

FREQUENCY	RC	TL REQ＇D	TL ACTUAL	ロK？
		DB	DB	
125	45	22.9	43	$\square K$
$25 \square$	$4 \square$	37.6	52	$\square K$
$5 \square \square$	35	37.8	59	$\square K$
$1 \square \square \square$	$3 \square$	37.6	67	$\square K$
$2 \square \square \square$	25	33.9	72	$\square K$
$4 \square \square \square$	$2 \square$	35.2	55	$\square K$

Figure 23 －Faculty Office Check

The College
OF Business Administration 2006

Canclusians：

AS SEEN IN THE ABロVE TABLES，THE FLロロR SYSTEM HAS BEEN SHロWN Tロ BE ADEQUATE IN BロTH THE CLASSRロロM AND THE FACULTY ロFFICE FロR ALL $\square F$ THE ロロTAVE BANDS BETWEEN 125 AND 4ロロロ HZ． SINCE THE ASGUMED TRANGMISSIロN LロSG WAG GREATER THAN THE TRANSMISSIDN LロSS REQUIRED，NロTHING NEEDED Tロ BE CHANGED IN THE FLロロR SYSTEM ロR IN EITHER ロF THE RロロMS Tロ ロBTAIN THE RECロMMENDED RC VALUE．

CaNGTRUCTIロN BREADTH STUDY

The College OF Business Administration

Michael Troxelu Structural Option

Final Report
2006

CINSTRUCTIUN BREADTH STUDY

PRロBLEM STATEMENT：

THE DESIGN ロF A STRUCTURAL SYSTEM IS ロNLY GロロD IF IT IS REALISTIC．A SYSTEM THAT CAN CARRY THE LロAD IS NDT NECESSARILY A SYSTEM THAT CAN BE BUILT，AND EVEN IF IT CAN BE BUILT，IT MAY NDT BE ECロNロMICAL．FロR A BUILDING Tロ BE BபILT，SロMEロNE HAS Tロ PAY FロR IT．IN MANY CASES， THE DESIGN CHロSEN IS BASED ロN ᄃロST AND TIME．IN PRロPロSING A NEW SYSTEM FロR THE SUPERSTRUCTURE ロF A BUILDING，IT IS NECESSARY Tロ CロMPARE THE CロST AND THE CロNSTRUCTIロN TIME Tロ THE ロRIGINAL

Figure 24 －CBA under construction DESIGN IN ロRDER Tロ ACCURATELY JUDGE THE SYSTEMS AGAINST EACH ロTHER．THE GロAL ロF THIS STUDY IS Tロ ᄃロMPARE THE CロSTS AND ᄃロNSTRUCTIDN TIMES ロF THE ロRIGINAL SUPERSTRUCTURE AND THE PRDPロSED CHANGES Tロ THE STRUCTURE．SINCE THE FロUNDATIロN AND THE RロロF ARE NDT PART ロF THE PRロPロSED CHANGE，THロSE ELEMENTS WILL BE LEFT ロUT ロF THE STUDY．AN EFFロRT WILL BE MADE Tロ CロMPARE THE SYSTEMS IN THE MロST SIMILAR FASHIDN AS PロSSIBLE．

EXISTING SYSTEM：

PRECAST CロNCRETE IN GENERAL CAN BE ERECTED QUICKLY IN CロMPARISロN Tロ ロTHER TYPES ロF SYSTEMS，BUT WILL HAVE A LロNG LEAD TIME．IN THE EXISTING SYSTEM，THERE WAS A LロT ロF REPETITIロN WHICH

The College OF
Business Administration

Michael Troxelu Structural Option

Final Report 2006

MAKES THE DESIGN LESS EXPENSIVE AND EASIER Tロ CロNSTRUCT．AN ESTIMATE ロF THE EXISTING SYSTEM ロF THE SUPERSTRUCTURE WAS ᄃロMPLETED．WITH THERE ロNLY BEING ロNE TYPE ロF ᄃロLபMN，A 24 ＂ SQUARE ᄃロLபMN，FINDING THE UNIT ᄃロST AND THE NபMBER WAS ALL

Figure 25 －CBA under construction

THAT WAS NEEDED Tロ DETERMINE CロST．

SIMILARLY，THERE WERE ロNLY THREE TYPES ロF BEAMS AND ロNE TYPE ロF HロLLロW CロRE PLANK．THE ロTHER ITEMS INCLUDED IN THE CロST ESTIMATE WERE THE SHEAR WALLS AND THE TロPPING ロN THE PLANK．THE TABLE BELロW SHロWS THE

CロSTS ロF THE DIFFERENT ELEMENTS ロF THE EXISTING SYSTEM．A MロRE DETAILED ESTIMATE CAN BE FロUND IN APPENDIX C．

Precast System	
Material	Cost
Precast Columns	$\$ 226,260$
Precast Beams	$\$ 122,522$
Precast Shear Walls	$\$ 173,232$
Hollow－core Plank	$\$ 573,835$
Concrete Topping	$\$ 155,430$
Total Cost	$\mathbf{\$ 1 , 2 5 1 , 2 7 9}$

Figure 26 －Precast Cost

The College
of
Business
Administration

Michael Troxelu
Structural Option
Final Report
2006

THE CONSTRUCTIGN SEQUENCE WHICH WAS DETERMINED Ta be MロST EFFICIENT FIR THIS PRロJECT WAS Tロ WORK BY FLロロR AS ロPPロSED ta warking by bay．The schedule which shaws the arder and LENGTH ロF CINSTRUCTIGN CAN BE FロUND IN APPENDIX C．THE ENTIRE PRECAST PACKAGE IS SHOWN TG TAKE 53 DAYS．THIS IS ASSUMING THERE ARE EITHER $\square N E$ QR TWロ CREWS $\square N$ SITE WGRKING AT A TIME．

Prapased Steel System：

STRUCTURAL STEEL SYSTEMS ALSロ TEND Tロ BE CONSTRUCTED FAST AND HAVE SIMEWHAT LING LEAD TIMES．THE PRロPロSED STEEL BUILDING WAS DESIGNED Tロ BE EASY TG CINSTRUCT．BRACED FRAMES WERE USED FQR THE LATERAL SYSTEM，INSTEAD ロF THE EXPENSIVE AND TIME CINSUMING MIMENT CONNECTIUNS THAT םCCUR IN MIMENT FRAMES． ALSロ，THE BUILDING WAS DESIGNED USING SIMILARITY WHERE PロSSIBLE． INCLUDED IN THE ESTIMATE FGR THE PRロPロSED STEEL SYSTEM WERE THE STEEL MEMBERS，METAL DECKING，SHEAR STUDS，CINCRETE SLAB，FIREPROGFING，AND THE WELDED WIRE FABRIC WHICH WILL bE IN the slab．The table belaw shaws the BREAKDOWN QF THESE CロSTS．A MIRE DETAILED ESTIMATE FGR THIS SYSTEM CAN BE FQUND IN APPENDIX C．

THE CONSTRUCTION SEQUENCE ANALYZED FIR THE PRロPロSED SYSTEM WAS THE SAME AS THAT WHICH WAS USED FIR THE existing system．The schedule，which was

Steel System	
Material	Cost
Steel Columns	$\$ 137,933$
Steel Beams	$\$ 408,406$
Steel Braces	$\$ 136,442$
Shear Studs	$\$ 13,865$
Metal Decking	$\$ 111,470$
Fireproofing	$\$ 151,099$
Welded Wire Fabric	$\$ 23,589$
Concrete Slab	$\$ 165,635$
Total Cost	$\mathbf{\$ 1 , 1 4 8 , 4 3 9}$

Figure 26 －Steel Cost PREPARED USING MICRロSロFT PRロلECT，FロR THE STEEL SYSTEM CAN BE FロUND IN APPENDIX C．

The College
OF
BuSiness
Administration

Michael Troxelu Structural Option

Final Report
Administration
2006

Cast Camparisan：

THE TABLES FロபND EARLIER IN THIS SECTIロN SHロW THE CロSTS ロF THE EXISTING PRECAST CロNCRETE SYSTEM AND THE PRロPロSED STEEL SYGTEM．IN BロTH CASES，THE GRAVITY AND LATERAL SYGTEMS WERE INCLUDED IN THE TAKEロFF．THE PRロPロSED SYGTEM WAS SHロWN Tロ CロST LESS THAN THE EXISTING SYSTEM．THE CロSTS WERE SロMEWHAT CLロSE， BபT THE STEEL SYSTEM CAME ロபT Tロ BE ABロபT 串 $1 \square \square, \square \square \square$ LESS THAN THE CロNCRETE SYSTEM．THE DIFFERENCE WAS A SAVINGS ロF ABロUT B\％ ロF THE TロTAL CロST ロF THE ロRIGINAL PRECAST CロNCRETE SYSTEM．

System	Cost
Steel	$\$ 1,148,439$
Precast Concrete	$\$ 1,251,279$
Difference	$\mathbf{\$ 1 0 2 , 8 4 0}$
\％Difference	$\mathbf{8 . 2}$

Figure 27 －Cost Comparison

THESE CロSTS ABロVE WERE ALSロ CロNVERTED INTロ CロSTS PER SQUARE FロロT．THE SQUARE FロロTAGE USED FロR THIS PURPロSE WAS ปபST THAT ロF THE SECロND，THIRD，FロபRTH，AND FIFTH FLロロRS．THE GRロUND FLロロR WAS NロT INCLUDED AS PART ロF THE SQUARE FロロTAGE SINCE THE CロST ロF THE SLAB ロN GRADE AND THE FロபNDATIロN WAS NロT INCLUDED IN THESE CロSTS．THESE PER SQUARE FロロT CロSTS INCLUDE ロNLY THE STRUCTURE ロF THE BUILDING AND NDT ANY ロF THE FINISHES ロR ARCHITECTURAL FEATURES THAT WILL BE IMPLEMENTED．

Cost per square foot	
Steel	$\$ 14.63$
Precast Concrete	$\$ 15.94$

Figure 28 －Sq．Ft．Costs

The Coluege OF Business Administration

MICHAEL TROXELL Structural Option

FINAL REPORT
2006

Schedule Comparisan：

THE SCHEDULES FロUND $\square N$ THE FロLLOWING PAGES SHOW HOW LING EACH OF THE STRUCTURAL SYSTEMS OF THE CBA WILL TAKE Tロ CONSTRUCT．THE EXISTING SYSTEM IS SHOWN TG REQUIRE A TOTAL GF 53 DAYS WHICH IS ALMOST 11 WEEKS．THIS IS LESS THAN THE PRロPロSED STEEL SYSTEM WHICH WILL TAKE 63 DAYS Tロ FINISH．THE DIFFERENCE \quad F TWG WEEKS MEANS THE TASKS FGLLOWING THE CINSTRUCTION ロF THE SUPERSTRUCTURE WILL BE ABLE Tロ START THAT MUCH EARLIER IN THE CONCRETE SYSTEM．

CaNCLUSIONS：

After analyzing the twa structural systems l feel the PRIPロSED SYSTEM IS AS GロロD AS THE EXISTING SYSTEM．THE TWI WEEK DIFFERENCE IN CINSTRUCTIロN TIME AND THE \＄ 1 ロロ，ロロロ CロST DIFFERENCE ロFFSET EACH םTHER FOR THE MOST PART．THIS CHOICE WaULD be given ta the awner ta decide which is mare impartant． IN THIS CASE THE TIME FACTロR MAY be FロR THE NロRTHERN ARIZロNA UNIVERSITY DUE TG THE BUILDING NEEDING Tロ be READY FGR A SEMESTER Tロ START．GN THE ロTHER HAND，THE UNIVERSITY MAY NEED ta MAKe the decisian based an the battam line cast af the BUILDING．

CロNCLUSIロNS

The College OF Business Administration

Michael Troxelu Structural Option

Final Report
2006

CロNCLUSIロNS：

THE GロAL ロF THIS THESIS WAS Tロ DESIGN A STRUCTURAL SYSTEM FGR THE CロLLEGE OF BUSINESS ADMINISTRATIGN THAT PERFGRMS AS WELL AS ロR BETTER THAN THE ロRIGINAL SYSTEM．THE ロRIGINAL PRECAST CINCRETE SYSTEM WAS SHOWN Tロ BE EFFECTIVE AND WロRKED WELL WITH the LAyロut af the rba．Hawever，I felt that it may Nat have been THE MロST EFFICIENT SYSTEM WHEN CロNSIDERING CロST AND CONSTRUCTIロN TIME．A CロMPロSITE STEEL SYSTEM WAS CHロSEN AS THE PRIPロSED SYSTEM．THE PROPロSED SYSTEM WAS ANALYZED AND SHOWN Tロ BE CAPABLE Tロ HANDLE THE PREGCRIBED DESIGN GRAVITY AND LATERAL LロADS．A SINGLE ANGLE CロNNECTIDN BETWEEN A TYPICAL BEAM AND A TYPICAL GIRDER WAS DESIGNED Tロ SHロW THAT THE CロNNECTIDNS IN THE PRロPロSED STEEL SYSTEM WロULD BE SIMPLE，INEXPENSIVE，AND EASY Tロ ᄃロMPLETE DURING ᄃロNSTRUCTIDN．THE PRロPロSED SYSTEM ALSロ WEIGHED LESS THAN THE EXISTING SYSTEM Sロ THE FロUNDATIロN WロULD BE ADEQUATE AND CロULD PロSSIBLY BE REDESIGNED TD BE LESS EXPENSIVE Tロ HロLD THE LロWER LロADS．

A CロST CロMPARISロN ロF THE TWロ SYSTEMS SHロWS THE PRロPロSED STEEL SYSTEM，虫 14.63 PER SQUARE FロロT，ᄃロST LESS THAN THE EXISTING PRECAST CロNCRETE SYSTEM AT 串 15.94 PER SQUARE FロロT． THロSE LロSTS TRANSLATE INTロ AN B． 2% SAVINGS BY USING THE PRロPロSED STEEL SYSTEM．A SCHEDULE WAS ALSロ PREPARED FロR EACH ロF THE SYSTEMS．THEY SHロW THAT THE EXISTING SYSTEM TAKES 53 DAYS Tロ CロMPLETE WHEREAS THE PRロPロSED SYSTEM TAKES G3 DAYS． THE TWロ SYSTEMS SEEM Tロ FロR THE MロST PART INTERCHANGEABLE．THE CHロICE ロF SYSTEM WロULD DEPEND ロN WHAT THE MロRE IMPロRTANT ISSUE FロR THE ロWNER IS；TIME ロR ロロST．FロR A UNIVERSITY，BロTH TIME AND ロVERALL CロST WロULD BE MAJロR FACTロRS IN DECIDING WHICH SYSTEM Tロ Gロ WITH．

THE RESULTS ロF AN ACロபSTICAL ANALYSIS SHロW THAT THE PRロPロSED CロMPロSITE STEEL FLロロR SYSTEM WロULD BE ADEQUATE IN

The Coluege OF Business Administration

Michael Troxelu Structural Option

Final Report 2006

DISSIPATING SロUND MADE BY MECHANICAL FANS．THE ANALYSIS WAS DロNE Tロ ᄃHECK IF THE TRANSMISSIロN LロSS THRロUGH THE NEW PRロPロGED FLロロR GYGTEM WロபLD BE HIGH ENロபGH Tロ REACH THE RECロMMENDED RロロM CRITERIA LEVELS DUE Tロ HVAD NロIGE．THE FLロロR BELロW THE MECHANICAL MEZZANINE WAS SHロWN Tロ PRロVIDE ENDUGH TRANSMISSIロN LロSS Tロ REACH THE RECロMMENDED VALUES FロR RC IN BロTH A PRIVATE ロFFICE AND A CLASSRロロM．

RECOMMENDATION

THE TWI SYSTEMS RESEARCHED，THE EXISTING PRECAST SYGTEM CロNCRETE AND PRロPロSED STEEL SYSTEM，ARE BロTH REASロNABLE CHロICES FロR A STRUCTURAL SYSTEM FロR THE CロLLEGE ロF BUSINESS ADMINISTRATIロN．BASED ロN THE CRITERIA ロF ᄃロST，ᄃロNSTRUCTIロN TIME，SIMPLICITY ロF CロNSTRUCTIDN，THE PRロPロSED SYSTEM PERFロRMS ปபST AS WELL AS THE EXISTING SYSTEM．I RECDMMEND EITHER SYSTEM FロR USE FロR THE CロLLEGE ロF BUSINESS ADMINISTRATIDN．

The College
OF
Business
Administration

Michael Troxell Structural Option

Final Report Administration

ACKNOWLEDGEMENTS

I WロபLD LIKE Tロ THANK ANYロNE WHロ HELPED ME THRロபGHロபT THE CロபRSE ロF THIS PRロปECT．THロSE WHロ TロロK TIME Tロ ANSWER QUESTIロNS AND Tロ EXPLAIN UNCERTAINTIES Tロ ME，THANK Yロப VERY MபロH．

THANK Yロப Tロ THE ENTIRE ARCHITECTURAL ENGINEERING
DEPARTMENT．I ESPECIALLY WANT Tロ THANK PRロFESSロR PARFITT，MY THESIS ADVISロR，AND DR．HANAGAN FロR ALL ロF THEIR HELP THIS YEAR．

IN ADDITIロN，I WANT Tロ THANK THE ADMINISTRATIロN ロF NロRTHERN ARIZロNA UNIVERSITY FロR ALLロWING ME Tロ USE THEIR NEW BUILDING AS A LEARNING TロロL，ESPECIALLY MARY REIK FロR ALL ロF HER HELP．ALSロ，I WANT Tロ THANK LRAIG PロRTER FRロM CARUSロ TURLEY SCロTT，INC．FロR HIS TIME IN ANSWERING QUESTIロNS I HAD ABロUT THE DESIGN ロF THE СBA．

I WロபLD ALSロ LIKE Tロ THANK ALL MY FRIENDS HERE AT PENN STATE．THANK Yロப Tロ ALL ロF THロSE WHロ ANSWERED ALL MY QUESTIロNS AND ロFFERED HELP．SPECIAL THANKS Gロ Tロ LHRIS GLINGKI AND DAVE MELFI FロR THEIR TIME AND HELP．

I WロபLD ALSa LIKE Tロ THANK MY FAMILY．THANK Yロப Sロ MபロH FロR ALL ロF YロபR SUPPロRT．LASTLY I WロபLD LIKE Tロ THANK MY FIANCÉE ASHLEY FロR HER PATIENCE，SUPPロRT AND ENCロURAGEMENT ロVER THIS PAST YEAR．

The College
OF Business Administration

Michael Troxelu Structural Option

Final Report
2006

REFERENCES

1）INTERNATIGNAL BUILDING CロDE．FALLS CHURCH，VA．THE INTERNATIONAL CロDE CロUNCIL，2ロロ3

2）MANUAL $\square F$ SteEL CaNStructian．LaAd and Resistance FACTIR DESIGN，THIRD EDITIGN．CHICAGロ，ILL：AMERICAN INSTITUTE ロF STEEL CロNSTRUCTION，INC．，2ロロ1．

3）MiNimum Design LaAds far Buildings and ather Structures． RESTIN，VA：AMERICAN SロCIETY ロF CIVIL ENGINEERS， 2 ロロ3．

4）STEEL DECKS FロR FLロロRS AND Rロロfs．DESIGN MANUAL AND CATALロG वf PRロDUCTS．PLAINFIELD，NJ：பNited STEEL DECK， INC．，2ロロZ．

5）MEANS BUILDING CロNSTRUCTION CロSt DATA．Kingstan，MA： R．S．MEANS LロMPANY， $2 \square \square 5$.

6）EgAN，DAVID M．，ARCHITECTURAL ACQUStics．New Yark： McGraw－Hill Campanies， 1988.

APPENDICES

$$
\begin{gathered}
\text { A - LロAD CALCULATIロNS } \\
\text { B - RAM ロUTPUT } \\
\text { C - LロST \& SCHEDULE } \\
D \text { - ACロUSTICAL ANALYSIS }
\end{gathered}
$$

APPENDIX A

LロAD CALCULATIロNS

WIND ANALYSIS

 Simplified Method－ASce 7－02 Sec． 6.4| WIND LIAD FACTORS | | | |
| :---: | :---: | :---: | :---: |
| Mean building height | H（FT．）$=$ | 70 | |
| bASIC WIND Speed： | $V(\mathrm{MPH})=$ | 90 | Fram Plans |
| BUILDING CATEGORY： | CATEGORY | 111 | TAble 1－1 |
| IMPQRTANCE FACTGR： | $1=$ | 1.15 | TAbLe 6－1 |
| EXPQSURE CATEGQRY： | CATEGARY | c | SEc．6．5．6 |

Zane	P_{53}	
A	17.8	harizantal Pressures
в	－4．7	
C	11.9	
D	－2．6	

$P_{s}=\lambda * I^{*} P_{530}$
$1=1.15$
$P_{\text {s3a }}=17.8-(-4.7)$
$\lambda:$ SEE BELGW

HEIGHT	$\boldsymbol{\lambda}$	$\mathbf{1}$	$\mathbf{P}_{\text {TOT }}=\boldsymbol{\lambda} \mathbf{I I}^{*} \mathbf{P}_{\mathbf{5 3}}$（PSF）
$\mathrm{O}-15$	1.21	1.15	22.5
$2 \square$	1.29	1.15	23.7
25	1.35	1.15	24.6
$3 \square$	1.4	1.15	25.3
35	1.45	1.15	$26 . \square$
$4 \square$	1.49	1.15	26.6
45	1.53	1.15	27.2
$5 \square$	1.56	1.15	27.7
55	1.59	1.15	28.1
$6 \square$	1.62	1.15	28.5

		NORTH－SロUTH			EASt－WEST		
Level	PLF	F_{x}	V_{x}	M_{\times}	F_{x}	V_{x}	M_{\times}
Ragf	140	35.3	$\square . \square$	2257.9	13.7	ロ．ロ	878.1
5	313	78.9	35.3	4298.7	30.7	13.7	1671.7
4	359	90.5	114.2	3799.7	35.2	44.4	1477.6
3	350	88.2	204.6	2469.6	34.3	79.6	960.4
2	311	78.4	292.8	1097.2	30．5	113.9	426.7
1	\square	$\square . \square$	371.2	$0 . \square$	ㅁ．0	144.4	$0 . \square$
		$\Sigma=$		$\Sigma=$	$\Sigma=$		$\Sigma=$
		371.2		13923.1	144.4		5414.5

APPENDIX B

RAM ロபTPUT

Gravity Beam Design Takeoff
RAM Steel v10.0
DataBase: model2
Building Code: IBC

STEEL BEAM DESIGN TAKEOFF:

Floor Type: mechanical
Story Level 4
Steel Grade: $\mathbf{5 0}$
SIZE
W12X14
W18X40

Total Number of Studs $=\mathbf{7 3 3}$

Floor Type: typ
Story Levels 2 to 3
Steel Grade: $\mathbf{5 0}$
SIZE
W8X10
W12X14
W14X22
W16X26
W16X31
W21X50
W21X62
\#

30
14

44
733

$\#$
38
35
6
12
36
14
14
$-\mathbf{1 5 5}$

LENGTH (ft)	WEIGHT (lbs)
385.58	3884
698.04	9881
177.48	3920
396.74	10368
1297.85	40321
505.91	25306
504.00	31385
	$---\boldsymbol{- a}-\mathbf{-}$
	$\mathbf{1 2 5 0 6 3}$

LENGTH (ft)
590.16
504.00
WEIGHT (lbs) 8354 20237

28591

125063

Total Number of Studs $=\mathbf{3 3 7 4}$

Floor Type: 2nd
Story Level 1
Steel Grade: $\mathbf{5 0}$

SIZE	$\#$	LENGTH (ft)	WEIGHT (Ibs)
W8X10	35	369.70	3724
W12X14	36	726.57	10285
W14X22	36	973.95	21509
W16X26	12	396.74	10368
W16X31	7	253.85	7886
W21X44	1	36.46	1613
W21X50	6	217.45	10877
W21X62	14	504.00	31385

Gravity Beam Design Takeoff
 reof

RAM Steel v10.0
DataBase: model2
Building Code: IBC SIZE

Page $2 / 2$ 03/21/06 21:49:35
Steel Code: AISC LRFD
$\#$
---147

WEIGHT (lbs)

147
97646

Total Number of Studs $=\mathbf{2 2 1 5}$

TOTAL STRUCTURE GRAVITY BEAM TAKEOFF

Steel Grade: 50

SIZE	\#	LENGTH (ft)	WEIGHT (lbs)
W8X10	111	1140.85	11491
W12X14	136	2712.80	38401
W14X22	48	1328.92	29348
W16X26	36	1190.21	31104
W16X31	79	2849.54	88528
W18X40	14	504.00	20237
W21X44	1	36.46	1613
W21X50	34	1229.26	61488
W21X62	42	1512.00	94154
	501		376364

Total Number of Studs $=\mathbf{9 6 9 6}$

RAM Steel v10.0
DataBase: model2
04/04/06 15:12:08
Building Code: IBC
Column Line A-1

Level
5th
4th
3rd
2nd
$\mathbf{P u}$
29.5
90.7
152.7
153.6
Mux
4.9

Muy LC LC Interaction Eq. Angle
13.2
4.1
4.1
12.6
10.59 Eq H1-1a
90.050 W10X33
29.81 0.97 Eq H1-1a
$90.0 \quad 50$ W10X33
$14.9 \quad 10.91$ Eq H1-1a 90.0
15.0

1 0.92 Eq H1-1a
$90.0 \quad 50$ W10X54

Column Line A-2
Level
5th
4th
3rd
2nd
$\mathbf{P u}$
64.7
155.2
240.0
309.0

Column Line A-3
Level
5th
4th
3rd
2nd
$\mathbf{P u}$
67.6
141.9
211.8
279.7

Mux
Muy L

20.3

10.65 Eq H1-1a
90.0
$90.0 \quad 50$ W10X33
2.4
15.920 .88 Eq H1-1a
17.2 2 0.63 Eq H1-1a
$16.5 \quad 10.77$ Eq H1-1a
$90.0 \quad 50$ W10X49
0.6
Mux
8.0
4.3
2.6
1.0

Muy LC 24.6 18.8
30.71 Eq H1-1a
$90.0 \quad 50$ W10X33
20.4
10.72 Eq H1-1a
16.510 .84 Eq H1-1a
90.050 W10X33
$90.0 \quad 50$ W10X49
$\begin{array}{lll}90.0 & 50 & \text { W10X49 } \\ 90.0 & 50 & \text { W10X49 }\end{array}$

Column Line A-5

Level
5th
4th
3rd
2nd
Pu
29.2
87.3
146.1
202.3

Mux	Muy	LC Interaction Eq.	Angle	Fy	Size	
2.4	11.9	3 0.56 Eq H1-1a	90.0	50	W10X33	
5.1	28.7	1	0.89 Eq H1-1a	90.0	50	W10X33
3.2	12.9	3 0.70 Eq H1-1a	90.0	50	W10X39	
2.2	13.2	1	0.90 Eq H1-1a	90.0	50	W10X39

Column Line A-13
Level
5th
4th
3rd
2nd

Pu	Mux
7.3	2.6
41.8	5.0
66.9	2.1
90.5	2.0

Muy	LC	Interaction Eq.	Angle	Fy	Size
7.4	1	0.21 Eq H1-1b	90.0	50	W10X33
14.0	1	0.39 Eq H1-1b	90.0	50	W10X33
6.0	1	0.40 Eq H1-1a	90.0	50	W10X33
5.6	1	0.49 Eq H1-1a	90.0	50	W10X33

Column Line B-1

Level	Pu	Mux
5th	57.7	8.5
4th	131.8	21.0
3rd	266.0	6.5
2nd	267.1	6.5

Muy	LC	Interaction Eq.	Angle
5.5	2	$0.67 \mathrm{Eq} \mathrm{H1-1a}$	90.0
16.5	6	$0.78 \mathrm{Eq} \mathrm{H1-1a}$	90.0
0.0	1	$0.83 \mathrm{Eq} \mathrm{H1-1a}$	90.0
0.0	1	$0.83 \mathrm{Eq} \mathrm{H1-1a}$	90.0

Fy Size
50 W12X40
50 W12X40
50 W12X65
50 W12X65

Gravity Column Design Summary
RAM Steel v10.0
Page 2/7
DataBase: model2
04/04/06 15:12:08
Building Code: IBC
Column Line B-2
Level
5th
4th
3rd
2nd

Column Line B-3

Level
5th
4th
3rd 2nd

Pu	Mux
118.6	12.5
217.0	3.3
315.3	3.0
402.8	0.8

Muy	LC	Interaction Eq.	Angle	Fy	Size
14.7	4	0.63 Eq H1-1a	90.0	50	W12X40
11.1	5	0.93 Eq H1-1a	90.0	50	W12X40
12.0	5	0.77 Eq H1-1a	90.0	50	W12X53
11.9	10	0.95 Eq H1-1a	90.0	50	W12X53

Column Line B-8

Level
5th
4th
3rd
2nd

Column Line B-15

Level

5th
4th
Pu
28.9

3rd
2nd

Column Line C-1
Level
5th
4th
3rd
2nd

Column Line C-2
Level

5th
4th
3rd
2nd
Pu 59.7 123.6

Pu	Mux
57.7	8.5
131.8	21.0
266.0	6.5
267.1	6.5

Muy	LC	Interaction Eq.
5.5	2	$0.67 \mathrm{Eq} \mathrm{H} 1-1 \mathrm{a}$
16.5	6	$0.78 \mathrm{Eq} \mathrm{H} 1-1 \mathrm{a}$
0.0	1	$0.83 \mathrm{Eq} \mathrm{H} 1-1 \mathrm{a}$
0.0	1	$0.83 \mathrm{Eq} \mathrm{H} 1-1 \mathrm{a}$

Angle	Fy	Size
90.0	50	W12X40
90.0	50	W12X40
90.0	50	W12X65
90.0	50	W12X65

Mux
2.1
6.2
2.7
2.6

Muy	LC	Interaction Eq.
1.6	4	0.38 Eq H1-1a
7.0	10	0.39 Eq H1-1a
2.8	4	0.53 Eq H1-1a
2.5	10	$0.66 \mathrm{Eq} \mathrm{H} 1-1 \mathrm{a}$

Angle	Fy	Size
90.0	50	W10X33

Muy LC Interaction Eq. Angle
Fy Size 12.240 .93 Eq H1-1a
90.050 W10X33
10.9
18.7 10 0.91 Eq H1-1a
90.050 W10X33
$9.6 \quad 4$ 0.62 Eq H1-1a $90.0 \quad 50$ W10X49
$9.1 \quad 10$ 0.79 Eq H1-1a $\quad 90.0 \quad 50$ W10X49

$$
111.1 \quad 2.7
$$

2.510 0.66 Eq H1-1a
$90.0 \quad 50$ W10X33

Gravity Column Design Summary
RAM Steel v10.0
Page 3/7
DataBase: model2
04/04/06 15:12:08
Building Code: IBC
Column Line C-3

Level
5th
4th
3rd 2nd

Pu	Mux
120.3	11.0
223.9	2.4
327.1	2.2
419.6	0.2

Muy LC $17.1 \quad 20.67$ Eq H1-1a.
13.12 0.97 Eq H1-1a $\begin{array}{lll}14.2 & 2 & 0.79 \text { Eq H1-1a } \\ 13.7 & 6 & 0.96 \text { Eq H1-1a }\end{array}$

Angle Fy Size
90.050 W10X39
$90.0 \quad 50$ W10X39
$90.0 \quad 50$ W10X54
$90.0 \quad 50$ W10X54

Column Line C-10

Level
5th
4th
3rd
2nd
$\mathbf{P u}$
63.4
132.6
242.7
329.0
Mux
5.7
11.7
6.6
5.2
Muy LC
Angle

Fy Size
$13.2 \quad 30.81$ Eq H1-1a
90.050 W10X39
22.560 .83 Eq H1-1a $90.0 \quad 50$ W10X39
11.730 .67 Eq H1-1a 90.050
11.160 .85 Eq H1-1a
$90.0 \quad 50$ W10X49
$90.0 \quad 50$ W10X49

Muy	LC Interaction Eq.	Angle	Fy	Size	
1.7	4	$0.37 \mathrm{Eq} \mathrm{H1-1a}$	90.0	50	W10X33
7.0	10	0.39 Eq H1-1a	90.0	50	W10X33
2.8	4	$0.53 \mathrm{Eq} \mathrm{H1-1a}$	90.0	50	W10X33
2.5	10	0.65 Eq H1-1a	90.0	50	W10X33

Pu	Mux
57.7	8.5
131.8	21.0
266.0	6.5
267.1	6.5

Muy	LC	Interaction Eq.	Angle	Fy	Size
5.5	2	0.67 Eq H1-1a	90.0	50	W12X40
16.5	6	0.78 Eq H1-1a	90.0	50	W12X40
0.0	1	0.83 Eq H1-1a	90.0	50	W12X65
0.0	1	0.83 Eq H1-1a	90.0	50	W12X65

Column Line D-2
Level
5th
4th
3rd
2nd
Pu
100.5
244.6
385.3
487.5
Mux
11.6
8.3
6.4
3.8

Muy	LC	Interaction Eq.	Angle	Fy	Size
13.2	4	0.52 Eq H1-1a	90.0	50	W14X43
9.5	4	0.97 Eq H1-1a	90.0	50	W14X43
7.3	4	0.78 Eq H1-1a	90.0	50	W14X61
7.8	10	0.97 Eq H1-1a	90.0	50	W14X61

Column Line D-3

Level

5th
4th
3rd
2nd
Pu
117.6
224.8
319.3
410.1

Mux
11.7
3.1
2.7
0.6
Muy LC Interaction Eq. Angle
$17.8 \quad 40.67$ Eq H1-1a $\quad 90.0$
Fy Size
$14.1 \quad 5$ 1.00 Eq H1-1a
14.750 .80 Eq H1-1a
14.810 0.99 Eq H1-1a
$\begin{array}{lll}90.0 & 50 & \mathrm{~W} 12 \mathrm{X} 53 \\ 90.0 & 50 & \mathrm{~W} 12 \mathrm{X} 53\end{array}$

RAM Steel v10.0
Page 4/7
DataBase: model2
04/04/06 15:12:08
Building Code: IBC
Column Line D-12

Level
5th
4th
3rd
2nd

Pu	Mux
65.2	5.4
131.7	10.9
238.0	6.2
322.6	4.9

Muy LC
14.1 40.84 Eq H1-1a
23.410 0.84 Eq H1-1a
$\begin{array}{rrr}12.2 & 4 & 0.66 \text { Eq H1-1a } \\ 11.6 & 10 & 0.84 \text { Eq H1-1a }\end{array}$
Angle Fy Size
$90.0 \quad 50$ W10X39
$90.0 \quad 50$ W10X39
$90.0 \quad 50 \quad$ W10X49
$90.0 \quad 50$ W10X49

Column Line D-19

Level
5th
4th
3rd
2nd

$\mathbf{P u}$	Mux
28.6	2.2
55.1	6.4
109.6	2.8
140.6	2.7

Muy	LC	Interaction Eq.	Angle	Fy	Size
1.6	3	0.37 Eq H1-1a	90.0	50	W10X33
6.8	6	0.39 Eq H1-1a	90.0	50	W10X33
2.7	2	0.52 Eq H1-1a	90.0	50	W10X33
2.4	6	0.65 Eq H1-1a	90.0	50	W10X33

Column Line E-1

Level
5th
4th
3rd
2nd

Pu	Mux
57.7	8.5
131.8	21.0
266.0	6.5
267.1	6.5

Muy	LC	Interaction Eq.	Angle
5.5	2	$0.67 \mathrm{Eq} \mathrm{H} 1-1 \mathrm{a}$	90.0
16.5	6	0.78 Eq H1-1a	90.0
0.0	1	$0.83 \mathrm{Eq} \mathrm{H1-1a}$	90.0
0.0	1	$0.83 \mathrm{Eq} \mathrm{H1-1a}$	90.0

Fy Size
W12X40
50 W12X40
50 W12X65
$0.0 \quad 10.83$ Eq H1-1a 90.0
50 W12X65

Column Line E-2

Level
5th
4th
3rd
2nd
Level
5th
4th
3rd
2nd

Column Line E-3

Pu	Mux
120.0	12.5
221.5	2.6
322.7	2.4
413.3	0.2

Muy LC Interaction Eq. A
ngle
Fy Size 12.1 20.50 Eq H1-1a 90.0

50 W12X45
$\begin{array}{rr}109.2 & 12.7 \\ 259.9 & 6.6\end{array}$
9.130 .94 Eq H1-1a
$90.0 \quad 50$ W12X45
$407.6 \quad 4.1$
$\begin{array}{lll}7.5 & 2 & 0.68 \text { Eq H1-1a } \\ 7.5 & 6 & 0.85 \text { Eq H1-1a }\end{array}$
$90.0 \quad 50$ W12X65
$90.0 \quad 50$ W12X65

Column Line E-11

Level
5th
4th
3rd
2nd

Pu	Mux
0.5	10.2
101.0	10.5
205.8	6.1
288.9	4.7

Muy LC Interaction Eq. Angle
$18.0 \quad 30.43 \mathrm{Eq} \mathrm{H1-1b} \quad 90.0$
Fy Size 22.76 0.88 Eq H1-1a
90.0

50 W10X33
11.830 .59 Eq H1-1a
11.260 .76 Eq H1-1a
90.0
$90.0 \quad 50$ W10X49

Column Line E-18

5th
4th
3rd 2nd

$\mathbf{P u}$	Mux
28.6	2.1
55.3	6.4
110.1	2.8
141.3	2.6

Muy LC

 Interaction Eq. A$7.0 \quad 6$ 0.39 Eq H1-1a

Angle Fy Size
$2.8 \quad 2$ 0.53 Eq H1-1a $90.0 \quad 50$ W10X33
$2.5 \quad 60.65$ Eq H1-1a $90.0 \quad 50$ W10X33

Column Line F-1
Level
5th
4th
3rd
2nd

Column Line F-2
Level
5th
4th
3rd
2nd

Column Line F-3

Level
5th
4th
3rd 2nd

Column Line F-9
Level
5th
4th
3rd
2nd

Pu	Mux
57.7	8.5
131.8	21.0
266.0	6.5
267.1	6.5

Muy	LC	Interaction Eq.	Angle	Fy	Size
5.5	2	0.67 Eq H1-1a	90.0	50	W12X40
16.5	6	0.78 Eq H1-1a	90.0	50	W12X40
0.0	1	0.83 Eq H1-1a	90.0	50	W12X65
0.0	1	0.83 Eq H1-1a	90.0	50	W12X65

Muy	LC	Interaction Eq.	Angle	Fy	Size
11.8	2	0.50 Eq H1-1a	90.0	50	W12X45
9.2	3	0.95 Eq H1-1a	90.0	50	W12X45
7.2	2	0.69 Eq H1-1a	90.0	50	W12X65
7.2	6	0.85 Eq H1-1a	90.0	50	W12X65

Pu	Mux
110.9	12.7
262.9	6.6
412.0	4.1
524.0	1.7

Pu	Mux
118.9	12.5
218.2	2.7
317.2	5.0
430.2	2.7

Muy	LC	Interaction Eq.	Angle	Fy	Size
16.4	4	0.66 Eq H1-1a	90.0	50	W12X40
12.5	4	0.95 Eq H1-1a	90.0	50	W12X40
13.2	2	0.79 Eq H1-1a	90.0	50	W12X53
8.3	10	0.98 Eq H1-1a	90.0	50	W12X53

Pu
60.8
122.8
222.0
314.7
Mux
4.2
8.1
5.6
4.3

Muy LC Interaction Eq. Angle

Fy	Size
50	W10X33
50	W10X33
50	W10X49
50	W10X49

Column Line F-16

Level	Pu	Mux	Muy	LC Interaction Eq.	Angle	Fy	Size	
5th	28.9	2.1	1.6	3	$0.38 \mathrm{Eq} \mathrm{H} 1-1 \mathrm{a}$	90.0	50	W10X33
4th	55.7	6.2	7.0	$60.39 \mathrm{Eq} \mathrm{H} 1-1 \mathrm{a}$	90.0	50	W10X33	
3rd	111.0	2.7	2.8	$20.53 \mathrm{Eq} \mathrm{H1-1a}$	90.0	50	W10X33	
2nd	142.4	2.6	2.5	6	$0.65 \mathrm{Eq} \mathrm{H} 1-1 \mathrm{a}$	90.0	50	W10X33

Column Line G-1

5th
4th
3rd 2nd

Pu	Mux
57.7	8.5
131.8	21.0
266.0	6.5
267.1	6.5

Muy LC
$5.5 \quad 2$ 0.67 Eq H1-1a
16.560 .78 Eq H1-1a

Angle Fy Size
$90.0 \quad 50$ W12X40
16.5
$90.0 \quad 50$ W12X40
$0.0 \quad 10.83$ Eq H1-1a 90.0
0.0

Column Line G-2

Level
5th
4th
3rd
2nd

Column Line G-3
Level
5th
4th
3rd
2nd

Pu	Mux
110.9	12.7
262.9	6.6
412.0	4.1
524.0	1.7

Muy	LC	Interaction Eq.	Angle	Fy	Size
11.8	2	0.50 Eq H1-1a	90.0	50	W12X45
9.2	3	0.95 Eq H1-1a	90.0	50	W12X45
7.2	2	0.69 Eq H1-1a	90.0	50	W12X65
7.2	6	0.85 Eq H1-1a	90.0	50	W12X65

Pu Mux
$116.3 \quad 11.0$
$210.5 \quad 2.8$
$293.2 \quad 3.2$
$393.7 \quad 1.1$

Muy	LC	Interaction Eq.	Angle	Fy	Size
12.6	2	0.59 Eq H1-1a	90.0	50	W10X39
10.0	3	0.88 Eq H1-1a	90.0	50	W10X39
11.3	5	0.77 Eq H1-1a	90.0	50	W10X49
7.7	10	0.95 Eq H1-1a	90.0	50	W10X49

Column Line G-6

Level
5th
4th
3rd
2nd

Pu	Mux
54.8	3.5
107.7	6.8
196.9	4.5
278.5	3.1

Muy L
9.9
17.160 .79 Eq H1-1a
$9.3 \quad 40.71$ Eq H1-1a
7.210 0.92 Eq H1-1a

Angle
Fy Size
50 W10X33
$90.0 \quad 50$ W10X33
$196.9 \quad 4.5$
3.1

Pu	Mux
28.9	2.1
55.9	6.1
111.8	2.7
143.4	2.5

Muy	LC	Interaction Eq.
1.6	3	$0.38 \mathrm{Eq} \mathrm{H} 1-1 \mathrm{a}$
7.0	6	$0.39 \mathrm{Eq} \mathrm{H1-1a}$
2.8	2	$0.53 \mathrm{Eq} \mathrm{H} 1-1 \mathrm{a}$
2.5	6	$0.66 \mathrm{Eq} \mathrm{H1-1a}$

Angle	Fy	Size
90.0	50	W 10 X 33
90.0	50	W 10 X 33
90.0	50	W 10 X 33
90.0	50	W 10 X 33

Column Line H-1

Level	Pu	Mux	Muy	LC Interaction Eq.	Angle	Fy	Size	
5th	29.5	4.9	12.6	1	0.59 Eq H1-1a	90.0	50	W10X33
4th	90.7	13.2	29.8	1	0.97 Eq H1-1a	90.0	50	W10X33
3rd	152.7	4.1	14.9	1	0.91 Eq H1-1a	90.0	50	W10X54
2nd	153.6	4.1	15.0	1	0.92 Eq H1-1a	90.0	50	W10X54

Gravity Column Design Summary

RAM Steel v10.0
Page 7/7
DataBase: model2

Column Line H-2

Level	Pu	Mux	Muy	LC Interaction Eq.	Angle	Fy	Size	
5th	64.7	8.0	24.6	4	0.71 Eq H1-1a	90.0	50	W10X33
4th	155.2	4.3	18.8	4	1.00 Eq H1-1a	90.0	50	W10X33
3rd	240.0	2.6	20.4	1	$0.72 \mathrm{Eq} \mathrm{H1-1a}$	90.0	50	W10X49
2nd	309.0	1.0	16.5	1	$0.84 \mathrm{Eq} \mathrm{H1-1a}$	90.0	50	W10X49

Column Line H-3

Level	Pu	Mux	Muy	LC Interaction Eq.	Angle	Fy	Size
5th	66.2	8.0	19.6	$10.63 \mathrm{Eq} \mathrm{H1-1a}$	90.0	50	W10X33
4th	131.8	1.9	14.2	$40.81 \mathrm{Eq} \mathrm{H1-1a}$	90.0	50	W10X33
3rd	193.5	1.7	13.3	$30.74 \mathrm{Eq} \mathrm{H1-1a}$	90.0	50	W10X45
2nd	253.4	0.3	14.5	$10.92 \mathrm{Eq} \mathrm{H1-1a}$	90.0	50	W10X45

Column Line H-4

Level	Pu	Mux	Muy	LC Interaction Eq.	Angle	Fy	Size
5th	26.1	1.5	9.9	$40.48 \mathrm{Eq} \mathrm{H1-1a}$	90.0	50	W10X33
4th	76.7	3.0	25.5	$10.78 \mathrm{Eq} \mathrm{H1-1a}$	90.0	50	W10X33
3rd	127.4	2.2	11.4	$30.74 \mathrm{Eq} \mathrm{H1-1a}$	90.0	50	W10X33
2nd	175.8	1.3	12.2	$10.95 \mathrm{Eq} \mathrm{H1-1a}$	90.0	50	W10X33

Column Line H-7

Level	Pu	Mux	Muy	LC Interaction Eq.	Angle	Fy	Size	
5th	7.3	2.6	7.5	1	$0.21 \mathrm{Eq} \mathrm{H1-1b}$	90.0	50	W10X33
4th	42.1	5.0	14.1	1	$0.39 \mathrm{Eq} \mathrm{H1-1b}$	90.0	50	W10X33
3rd	67.4	2.1	6.1	1	$0.40 \mathrm{Eq} \mathrm{H1-1a}$	90.0	50	W10X33
2nd	91.1	2.0	5.6	1	$0.49 \mathrm{Eq} \mathrm{H1-1a}$	90.0	50	W10X33

APPENDIX C

ᄃロST \& SCHEDபLE

BEAMS

SizE	LINEAR Fogtage	CISTS PER FODT				$\begin{aligned} & \text { Cast } \\ & \hline \text { TatAL } \\ & \hline \end{aligned}$
		MAT．	LABロR	EqUIP	TOTAL	
W 8×1ם	1142	10.45	3.63	2.38	16.46	18797
W 12×14	2713	13.5	2.35	1.51	17.36	47ロ98
W 14×22	1328	23	2.2	1.44	26.64	35378
W 16×26	$119 \square$	25	$2 . \square 7$	1.33	28.4	33796
W 16×31	2850	$3 \square$	2.3	1.47	33.77	96245
W $18 \times 4 \square$	$5 \square 4$	42	3.28	1.58	46.36	23365
W $21 \times 5 \square$	1266	48	3.28	1.58	52.36	66288
W 21×62	1512	53	3.29	1.54	57.83	87439

TロTAL 4ロ84ロ6

CロLUMNS

SIZE	LINEAR Fortage	CISTS PER FIDT				$\begin{aligned} & \text { Cast } \\ & \hline \text { Tatal } \\ & \hline \end{aligned}$
		MAT．	LABCR	Equip	TOTAL	
W 1ロ×33	$79 \square$	34.5	3.96	2.59	$41 . \square 5$	32430
W 1 ロx39	275	4ロ．7	3.96	2.59	47.25	12994
W 1ロ×45	$25 \square$	46.9	3.96	2.59	53.45	13363
W $12 \times 4 \square$	11 －	42	2.69	1.76	46.45	511 －
W 12×58	115	59.3	2.9	1.9	64.1	7372
W 12×87	$32 \square$	91	3.4	2.23	96.63	30922
W 12×96	$34 \square$	99.5	3.4	2.23	$1 \square 5.13$	35744

TOTAL 137933

BRACES

SIZE	LINEAR	CロSTS PER FOロT				CロST
	FIOTAGE	MAT．	LABロR	EQUIP	TロTAL	TロTAL
W 1 T $\times 77$	1575	81	3.4	2.23	86.63	136442

TatAL

Metal Decking

SIZE	SQUARE Fogtage	COSTS PER SQUARE FODT				Cast
		MAT．	LABCR	EquIP	TロTAL	TロTAL
$\begin{gathered} 1.5^{\prime \prime} \text { DEEP, } \\ 22 \text { GAGE } \end{gathered}$	78500	1.14	0.26	0.02	1.42	111470

Cast \＆Schedule

Welded Wire Fabric

Size	SqUARE Fortage	CISTS PER HUNDRED SQUARE FEET				Cast
		MAT．	LABCR	Equip	Tatal	Tatal
$\begin{gathered} 6 \times 6 \mathrm{~W} 1.4 \\ \times W 1.4 \end{gathered}$	$7850 \square$	12	$18 . \square 5$	\square	30.05	23589

TロTAL
23589

CINCRETE SLAB

SIZE	SquARE Fogtage	CISTS PER SQUARE FOOT				Cast
		MAT．	LABCR	Equip	TOtAL	TロTAL
$4^{\prime \prime}+1.5^{\prime \prime}$ DECK	78500	1.18	0.66	$\square .27$	2.11	165635

SHEAR STUDS

Size	NUMBER	CISTS PER SQUARE FODT				Cast
		MAT．	LABCR	EquIP	TITAL	Total
$\begin{gathered} \text { 3/4" DIA., } 4^{\prime \prime} \\ \text { LםNG } \end{gathered}$	9696	0.46	0.69	0.28	1.43	13865

Firepratifing

COMPONENT	SquARE Fogtage	CISTS PER SQUARE FOLT				CロST
		MAT．	LABCR	EquIP	TITAL	TOtAL
BEAMS	43768	ロ． 41	ロ． 45	ロ．ロ7	$\square .93$	4ロ7ロ4
DECK	74447	0.62	$\square .54$	ロ．ロ9	1.25	$93 \square 59$
CロLUMNS	8668	ロ．88	$\square .97$	ロ． 15	2	17336

Precast Cancrete cast Analysis

CロLUMNS

SIZE	LINEAR Fogtage	CISTS PER FODT				Cast
		MAT．	LABCR	Equip	TOtAL	Total
$24^{\prime \prime} \times 24^{\prime \prime}$	$216 \square$	74.5	19.55	$1 \square .7$	1 C 4.75	226260

TOTAL 226260

BEAMS

SIZE	NUMBER	CロSTS PER BEAM				CロST
		MAT．	LABIRR	EQUIP	TOTAL	TロTAL
341 T27	32	1268	88	48	1396	44672
25 LB27	25	1268	88	48	1396	$349 \square \square$
26×24	25	$15 \square \square$	141	77	1718	$4295 \square$

TOTAL 122522

PLANK

Size	SQUARE Fogtage	CISTS PER SQUARE FOロT				Cast
		MAT．	LABCR	EquIP	TOtAL	TOTAL
$\begin{gathered} \hline 1 \square^{\prime \prime} \\ \text { HaLLaw } \\ \text { Care } \end{gathered}$	7850ロ	6.1	ロ．78	0.43	7.31	573835

> TロTAL 573835

SIZE	SQUARE Fogtage	COSTS PER SQUARE FODT				Cast
		MAT．	LABCR	EqUIP	TITAL	TOtAL
2＂LT WT CONCRET E	$7850 \square$	$1 . \square 4$	0.67	$\square .27$	1.98	$15543 \square$

TOTAL $15543 \square$

PRECAST SHEAR WALLS

SIZE	SqUARE Fogtage	CISTS PER SQUARE FOLT				Cロst
		MAT．	LABロR	EquIP	TOTAL	TOTAL
$\begin{gathered} 1 \square^{\prime \prime} \\ \text { THICK } \end{gathered}$	8640	12.15	4.35	3.55	$2 \square .05$	173232

STEEL SYSTEM

MATERIAL	Cast
Steel Calumns	中137，933
Steel beams	中4ロ8，4ロ6
Steel braces	中136，442
Shear Studs	中13，865
Metal Decking	中111，470
FIREPROGFING	中151，899
Welded Wire fabric	中23，589
CINCRETE SLAb	中165，635
Total Cost	\＄1，148，439

MATERIAL	COST
STRUCTURAL STEEL	\＄682，78ロ
CONCRETE	\＄165，635
DECK／WWF／STUDS	\＄3ロロ， 233
TOTAL	$\mathbf{\$ 1 , 1 4 8 , 4 3 9}$

PRECAST SYSTEM

MATERIAL	Cost
Precast Calumns	中226，260
Precast beams	中122，522
Precast Shear Walls	中173，232
Hallaw－core Plank	\＄573，835
CONCRETE TQpping	中155，430
Tatal cast	中1，251，279

Material	Cost
Precast Cancrete	\＄1，095，849
CONCRETE TGpping	中155，430
TItAL	中 1，251，279

Difference

SYSTEM	COST
STEEL	中 $1,148,439$
PRECAST CINCRETE	中 $1,251,279$

DIFFERENCE	\＄1ロ2，84口
\％DIFFERENCE	8.2
COST PER SQUARE FIOT	
STEEL	$\$ 14.63$
PRECAST CINCRETE	$\$ 15.94$

APPENDIX D

Acロபstical ANALYSIS
Acaustical AnAlysis－ロffice

Frequency	SIUUREE			RECEIVER			Saurce L_{w}
Hz	$\alpha_{\text {walls }}$	$\alpha_{\text {ceilins }}$	$\alpha_{\text {FLoor }}$	$\alpha_{\text {walls }}$	$\alpha_{\text {ceilins }}$	$\alpha_{\text {FLoor }}$	
125	ロ．1ロ	ロ．ロ1	$\square .29$	0.55	$\square . \square 2$	0.76	88
250	$\square .05$	$\square . \square 1$	$\square .10$	$\square .14$	$\square . \square 3$	0.93	89
$5 \square \square$	$\square .06$	$\square . \square 2$	0.05	$\square . \square 8$	$\square . \square 3$	0.83	82
1 ロロロ	$\square . \square 7$	ロ．ロ2	$\square . \square 4$	$\square . \square 4$	ロ．ロ3	0.99	77
$2 \mathrm{\square a口}$	$\square . \square 9$	$\square . \square 2$	$\square . \square 7$	ロ． 12	$\square . \square 3$	0.99	71
4ロロロ	ㅁ．08	$\square . \square 2$	$\square . \square 9$	ㅁ． 11	$\square . \square 2$	0.94	67

Frequency										
Hz	$\alpha_{\text {sab }, \text { ave }}$	5α	$\mathrm{R}_{\text {TS }}$	$\alpha_{\text {gAb，AVE }}$	sa	$\mathbf{R}_{\text {TR }}$	RC－3ロ Lp	SIUUREE L_{p}	NR	TL
125	ロ．13ロ3	2 Ca .1	231.2	0.4935	25.7	$5 \square .8$	45	$7 \square .36$	25	22.9
250	$\square .053 \square$	81.8	86.4	0.2601	13.6	18.3	$4 \square$	75.64	36	37.6
$5 \square \square$	0.0448	69.2	72.4	0.2036	10.6	13.3	35	69.40	34	37.8
1 ロロロ	$\square . \square 457$	$7 \square .5$	73.9	$\square .2060$	$1 \square .7$	13.5	$3 \square$	64.31	34	37.6
2 20ロ	$\square .0627$	96.7	$1 \square 3.2$	$\square .2577$	13.4	18.1	25	56.86	32	33.9
4ロロロ	0.0648	1 ロロ．ロ	$1 \square 6.9$	ロ．24ロ7	12.5	16.5	$2 \square$	52.71	33	35.2

Acロustical AnAlysis－ClassRagm

Frequency	Saurce			Receiver			SaUREE L_{w}
Hz	$\alpha_{\text {walle }}$	$\alpha_{\text {ceilins }}$	$\alpha_{\text {FLoor }}$	$\alpha_{\text {walls }}$	$\alpha_{\text {ceiling }}$	$\alpha_{\text {FLoor }}$	
125	ロ． 1 口	ㅁ．．ㅁ	$\square .29$	0.55	$\square . \square 2$	0.76	88
250	$\square . \square 5$	$\square . \square 1$	$\square .1 \square$	$\square .14$	$\square . \square 3$	0.93	89
$5 \square \square$	$\square .86$	ロ．ロ2	$\square . \square 5$	$\square . \square 8$	$\square . \square 3$	0.83	82
1 ロロロ	$\square . \square 7$	$\square . \square 2$	$\square . \square 4$	$\square . \square 4$	$\square . \square 3$	0.99	77
$20 \square 0$	$\square . \square 9$	$\square . \square 2$	ロ．ロ7	$\square .12$	ロ．$\square 3$	0.99	71
4ロロロ	$\square . \square 8$	$\square . \square 2$	$\square . \square 9$	ロ． 11	$\square . \square 2$	0.94	67

FREqUENCY										
Hz	$\alpha_{\text {SAE，AVG }}$	5α	$\mathrm{R}_{\text {TS }}$	$\alpha_{\text {SAB，AVE }}$	5α	$\mathrm{R}_{\text {TR }}$	RC－3ロ Lp	SIUREE L_{p}	NR	TL
125	$\square .13 \square 3$	2口1．1	231.2	$\square .4523$	213.1	389.1	$4 \square$	$7 \square .4$	$3 \square$	26.0
250	ㅁ．053ロ	81.8	86.4	$\square .3476$	163.7	$251 . \square$	35	75.6	41	38.2
$5 \square \square$	ㅁ．0448	69.2	72.4	ロ． 2937	138.3	195.9	$3 \square$	69.4	39	38． 1
1 ロロロ	$\square . \square 457$	$7 \square .5$	73.9	$\square .3269$	$154 . \square$	228.8	25	64.3	39	37.3
$2 \square \square \square$	0.0627	96.7	$1 \square 3.2$	0.3581	168.7	262.8	$2 \square$	56.9	37	34.2
4ロロロ	ロ．ロ64日	1ロロ．ロ	$1 \square 6.9$	0.3359	158.2	238.3	15	52.7	$3 \square$	35.5

[^0]
[^0]:

